このアイテムのアクセス数: 202

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s41467-021-24014-x.pdf4.17 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOkochi, Yasushien
dc.contributor.authorSakaguchi, Shuntaen
dc.contributor.authorNakae, Kenen
dc.contributor.authorKondo, Takefumien
dc.contributor.authorHonda, Naokien
dc.contributor.alternative大河内, 康之ja
dc.contributor.alternative坂口, 峻太ja
dc.contributor.alternative中江, 健ja
dc.contributor.alternative近藤, 武史ja
dc.contributor.alternative本田, 直樹ja
dc.date.accessioned2021-06-28T04:50:00Z-
dc.date.available2021-06-28T04:50:00Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/2433/263916-
dc.description機械学習によってバラバラな細胞たちをパズルのように組み立てる --1細胞計測データからの遺伝子発現マップの高精度予測--. 京都大学プレスリリース. 2021-06-21.ja
dc.description.abstractDecoding spatial transcriptomes from single-cell RNA sequencing (scRNA-seq) data has become a fundamental technique for understanding multicellular systems; however, existing computational methods lack both accuracy and biological interpretability due to their model-free frameworks. Here, we introduce Perler, a model-based method to integrate scRNA-seq data with reference in situ hybridization (ISH) data. To calibrate differences between these datasets, we develop a biologically interpretable model that uses generative linear mapping based on a Gaussian mixture model using the Expectation–Maximization algorithm. Perler accurately predicts the spatial gene expression of Drosophila embryos, zebrafish embryos, mammalian liver, and mouse visual cortex from scRNA-seq data. Furthermore, the reconstructed transcriptomes do not over-fit the ISH data and preserved the timing information of the scRNA-seq data. These results demonstrate the generalizability of Perler for dataset integration, thereby providing a biologically interpretable framework for accurate reconstruction of spatial transcriptomes in any multicellular system.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rights© The Author(s) 2021en
dc.rightsThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectGene expressionen
dc.subjectMachine learningen
dc.subjectTranscriptomicsen
dc.titleModel-based prediction of spatial gene expression via generative linear mappingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNature Communicationsen
dc.identifier.volume12-
dc.relation.doi10.1038/s41467-021-24014-x-
dc.textversionpublisher-
dc.identifier.artnum3731-
dc.addressLaboratory for Theoretical Biology, Graduate School of Biostudies, Kyoto University; Faculty of Medicine, Kyoto Universityen
dc.addressLaboratory for Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressLaboratory for Cell Recognition and Pattern Formation, Graduate School of Biostudies, Kyoto University; The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX)en
dc.addressLaboratory for Theoretical Biology, Graduate School of Biostudies, Kyoto University; Laboratory for Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University; Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciencesen
dc.identifier.pmid34140477-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2021-06-21-
dcterms.accessRightsopen access-
datacite.awardNumber19H04776-
datacite.awardNumber21H03541-
datacite.awardNumber17KT0021-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H04776/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H03541/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17KT0021/-
dc.identifier.eissn2041-1723-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle脳回路構築における軸索配線原理の解読ja
jpcoar.awardTitle多細胞動態を司る支配方程式のデータ駆動的解読ja
jpcoar.awardTitle1細胞遺伝子発現・力学動態の統合アプローチによる1個体発生原理の構成的理解ja
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
jpcoar.funderName.alternativeJapan Society for the Promotion of Science (JSPS)en
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons