このアイテムのアクセス数: 252
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
5.0029751.pdf | 1.86 MB | Adobe PDF | 見る/開く |
タイトル: | Infinite ergodicity that preserves the Lebesgue measure |
著者: | Okubo, Ken-ichi Umeno, Ken ![]() ![]() |
著者名の別形: | 大久保, 健一 梅野, 健 |
発行日: | Mar-2021 |
出版者: | AIP Publishing |
誌名: | Chaos |
巻: | 31 |
号: | 3 |
論文番号: | 033135 |
抄録: | In this study, we prove that a countably infinite number of one-parameterized one-dimensional dynamical systems preserve the Lebesgue measure and are ergodic for the measure. The systems we consider connect the parameter region in which dynamical systems are exact and the one in which almost all orbits diverge to infinity and correspond to the critical points of the parameter in which weak chaos tends to occur (the Lyapunov exponent converging to zero). These results are a generalization of the work by Adler and Weiss. Using numerical simulation, we show that the distributions of the normalized Lyapunov exponent for these systems obey the Mittag–Leffler distribution of order 1/2. |
著作権等: | © 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. |
URI: | http://hdl.handle.net/2433/264683 |
DOI(出版社版): | 10.1063/5.0029751 |
PubMed ID: | 33810722 |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス