このアイテムのアクセス数: 72

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2176-16.pdf9.47 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKajino, Naotakaen
dc.contributor.alternative梶野, 直孝ja
dc.contributor.transcriptionカジノ, ナオタカja-Kana
dc.date.accessioned2021-08-19T05:47:27Z-
dc.date.available2021-08-19T05:47:27Z-
dc.date.issued2021-04-
dc.identifier.urihttp://hdl.handle.net/2433/264790-
dc.description.abstractThis short survey is aimed at sketching the ergodic-theoretic aspects of the author's recent studies on Weyl's eigenvalue asymptotics for a "geometrically canonical" Laplacian defined by the author on some self-conformal circle packing fractals including the classical Apollonian gasket. The main result being surveyed is obtained by applying Kesten's renewal theorem [Ann. Probab. 2 (1974), 355- 386, Theorem 2] for functionals of Markov chains on general state spaces and provides an alternative probabilistic proof of the result by Oh and Shah [Invent. Math. 187 (2012), 1-35, Corollary 1.8] on the asymptotic distribution of the circles in the Apollonian gasket.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleThe Laplacian on some self-conformal fractals and Weyl's asymptotics for its eigenvalues: A survey of the ergodic-theoretic aspects (Research on the Theory of Random Dynamical Systems and Fractal Geometry)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2176-
dc.identifier.spage111-
dc.identifier.epage119-
dc.textversionpublisher-
dc.sortkey16-
dc.addressDepartment of Mathematics, Graduate School of Science, Kobe Universityen
dc.address.alternative神戸大学ja
dcterms.accessRightsopen access-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2176 ランダム力学系理論とフラクタル幾何学の研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。