このアイテムのアクセス数: 85

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2176-17.pdf5.59 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHino, Masanorien
dc.contributor.alternative日野, 正訓ja
dc.contributor.transcriptionヒノ, マサノリja-Kana
dc.date.accessioned2021-08-19T05:47:28Z-
dc.date.available2021-08-19T05:47:28Z-
dc.date.issued2021-04-
dc.identifier.urihttp://hdl.handle.net/2433/264791-
dc.description.abstractThe concept of martingale dimension is defined for symmetric diffusion processes and is interpreted as the multiplicity of filtration. However, if the underlying space is a fractal-like set, then estimating the martingale dimension quantitatively is a difficult problem. To date, the only known nontrivial estimates have been those for canonical diffusions on a class of self-similar fractals. This paper surveys existing results and discusses more-general situations.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleEstimate of martingale dimension revisited (Research on the Theory of Random Dynamical Systems and Fractal Geometry)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2176-
dc.identifier.spage120-
dc.identifier.epage128-
dc.textversionpublisher-
dc.sortkey17-
dc.addressDepartment of Mathematics, Kyoto Universityen
dc.address.alternative京都大学ja
dcterms.accessRightsopen access-
datacite.awardNumber19H00643-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H00643/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleディリクレ形式に基づく確率解析の研究 --空間構造と特異性の解明--ja
出現コレクション:2176 ランダム力学系理論とフラクタル幾何学の研究

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。