このアイテムのアクセス数: 186

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.jpowsour.2020.229182.pdf1.24 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKaushik, Shubhamen
dc.contributor.authorMatsumoto, Kazuhikoen
dc.contributor.authorOrikasa, Yukien
dc.contributor.authorKatayama, Misakien
dc.contributor.authorInada, Yasuhiroen
dc.contributor.authorSato, Yutaen
dc.contributor.authorGotoh, Kazumaen
dc.contributor.authorAndo, Hidekaen
dc.contributor.authorHagiwara, Rikaen
dc.contributor.alternative松本, 一彦ja
dc.contributor.alternative後藤, 和馬ja
dc.contributor.alternative萩原, 理加ja
dc.date.accessioned2021-09-30T08:18:11Z-
dc.date.available2021-09-30T08:18:11Z-
dc.date.issued2021-01-
dc.identifier.urihttp://hdl.handle.net/2433/265328-
dc.description.abstractThe abundance of sodium resources has sparked interest in the development of sodium-ion batteries for large-scale energy storage systems, amplifying the need for high-performance negative electrodes. Although transition metal phosphide electrodes have shown remarkable performance and great versatility for both lithium and sodium batteries, their electrochemical mechanisms in sodium batteries, particularly vanadium phosphides, remain largely elusive. Herein, we delineate the performance of VP₂ as a negative electrode alongside ionic liquids in sodium-ion batteries. The polycrystalline VP₂ is synthesized via one-step high energy ball-milling and characterized using X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Electrochemical tests ascertained improved performance at intermediate temperatures, where the initial cycle was conducted at 100 mA g⁻¹ yielded a significantly higher discharge capacity of 243 mAh g⁻¹ at 90°C compared to the limited capacity of 49 mAh g⁻¹ at 25°C. Enhanced rate and cycle performance are also achieved at 90 °C. Electrochemical impedance spectroscopy and scanning electron microscopy further reveal a reduced charge transfer resistance at 90°C and the formation of a uniform and stable solid electrolyte interface (SEI) layer after cycling. X-ray diffraction and nuclear magnetic resonance spectroscopy are used to confirm the conversion-based mechanism forming Na₃P after charging.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2020. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.en
dc.rightsThe full-text file will be made open to the public on 31 January 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectSodium ion batteryen
dc.subjectPhosphideen
dc.subjectIonic liquiden
dc.titleVanadium diphosphide as a negative electrode material for sodium secondary batteriesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Power Sourcesen
dc.identifier.volume483-
dc.relation.doi10.1016/j.jpowsour.2020.229182-
dc.textversionauthor-
dc.identifier.artnum229182-
dcterms.accessRightsopen access-
datacite.date.available2023-01-31-
dc.identifier.pissn0378-7753-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons