このアイテムのアクセス数: 70
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2197-18.pdf | 722.06 kB | Adobe PDF | 見る/開く |
タイトル: | On Fourier coefficients of modular forms of half-integral weight (Analytic, geometric and $p$-adic aspects of automorphic forms and $L$-functions) |
著者: | Kohnen, Winfried |
発行日: | Aug-2021 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2197 |
開始ページ: | 157 |
終了ページ: | 157 |
抄録: | In my talk, I reported about recent joint work with S. Gun in which a new proof was given that for any non-zero cusp form of half-integral weight in the plus space of level 4 (not necessarily a Hecke eigenform) there exist infinitely many fundamental discriminants D such that the Fourier coefficients evaluated at IDI are non-zero. The proof uses a new type of Dirichlet series built out of the squarefree coefficients of a form of half-integral weight. The result was first proved (usuing totally different methods) by Saha. By adapting the resonance method due to K. Soundararajan one can in fact demonstrate that such coefficients must take quite large values. The above mentioned results and their proofs can be found in [S. Gun, W. Kohnen and K. Soundararajan, Large Fourier coefficients of modular forms of half-integral weight, http://arxiv.org/abs/2994.14450]. |
URI: | http://hdl.handle.net/2433/265786 |
関連リンク: | http://arxiv.org/abs/2994.14450 |
出現コレクション: | 2197 保型形式とL関数の解析的、幾何的、p進的研究 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。