このアイテムのアクセス数: 76

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2198-07.pdf9.47 MBAdobe PDF見る/開く
タイトル: Tukey-order with models on Palikowski's theorems (Set Theory : Reals and Topology)
著者: Cardona, Miguel A.
発行日: Sep-2021
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2198
開始ページ: 70
終了ページ: 86
抄録: In [Paw86] Pawlikowski proved that, if r is a random real over N, and c is Cohen real over N[r], then (a) in N[r][c] there is a Cohen real over N[c], and (b) 2[ω] ∧ N[c] ∉ N ∧ N[r][c], so in N[r][c] there is no random real over N[c]. To prove this, Pawlikowski proposes the following notion: Given two models N ⊆ M of ZFC, we associate with a cardinal characteristic ξ of the continuum, a sentence ξ[M][N] saying that, in M, the reals in N give an example of a family fulfilling the requirements of the cardinal. So to prove (a) and (b), it suffices to prove that (a') cov(M)[M][[c]][N][[c]] ⇒ cof(M)[M][N] ⇒ cov(N)[M][N'], and (b') cov(M)[M][N] ⇒ add(M)[M][N] ⇒ non(M)[M][[c]][N][[c]] ⇒ cov(N)[M][[c]][N][[c]]. In this paper we introduce the notion of Tukey-order with models, which expands the concept of Tukey-order introduced by Vojtáš [Voj93], to prove expressions of the form ξ[M}[N] ⇒ η[M][N]. In particular, we show (a') and (b') using Tukey-order with models.
URI: http://hdl.handle.net/2433/266194
出現コレクション:2198 集合論 : 連続体上の組合せ論と位相空間論

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。