このアイテムのアクセス数: 122

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
S1560354719020060.pdf103.01 kBAdobe PDF見る/開く
タイトル: Variational Construction of Orbits Realizing Symbolic Sequences in the Planar Sitnikov Problem
著者: Shibayama, Mitsuru  kyouindb  KAKEN_id
著者名の別形: 柴山, 允瑠
キーワード: variational methods
symbolic dynamics
periodic solutions
発行日: Mar-2019
出版者: Springer Nature
誌名: Regular and Chaotic Dynamics
巻: 24
号: 2
開始ページ: 202
終了ページ: 211
抄録: Using the variational method, Chenciner and Montgomery (2000 Ann. Math. 52 881–901) proved the existence of an eight-shaped orbit of the planar three-body problem with equal masses. Since then a number of solutions to the N-body problem have been discovered. On the other hand, symbolic dynamics is one of the most useful methods for understanding chaotic dynamics. The Sitnikov problem is a special case of the three-body problem. The system is known to be chaotic and was studied by using symbolic dynamics (J. Moser, Stable and random motions in dynamical systems, Princeton University Press, 1973). In this paper, we study the limiting case of the Sitnikov problem. By using the variational method, we show the existence of various kinds of solutions in the planar Sitnikov problem. For a given symbolic sequence, we show the existence of orbits realizing it. We also prove the existence of periodic orbits.
著作権等: This is a post-peer-review, pre-copyedit version of an article published in 'Regular and Chaotic Dynamics'. The final authenticated version is available online at: https://doi.org/10.1134/S1560354719020060.
The full-text file will be made open to the public on 10 April 2020 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.
This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。
URI: http://hdl.handle.net/2433/266301
DOI(出版社版): 10.1134/S1560354719020060
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。