このアイテムのアクセス数: 179
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.cviu.2021.103333.pdf | 2.01 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Chu, Chenhui | en |
dc.contributor.author | Oliveira, Vinicius | en |
dc.contributor.author | Virgo, Giovanni, Felix | en |
dc.contributor.author | Otani, Mayu | en |
dc.contributor.author | Garcia, Noa | en |
dc.contributor.author | Nakashima, Yuta | en |
dc.date.accessioned | 2021-12-23T09:37:34Z | - |
dc.date.available | 2021-12-23T09:37:34Z | - |
dc.date.issued | 2022-01 | - |
dc.identifier.uri | http://hdl.handle.net/2433/266704 | - |
dc.description.abstract | Visually grounded paraphrases (VGPs) are different phrasal expressions describing the same visual concept in an image. Previous studies treat VGP identification as a binary classification task, which ignores various phenomena behind VGPs (i.e., different linguistic interpretation of the same visual concept) such as linguistic paraphrases and VGPs from different aspects. In this paper, we propose semantic typology for VGPs, aiming to elucidate the VGP phenomena and deepen the understanding about how human beings interpret vision with language. We construct a large VGP dataset that annotates the class to which each VGP pair belongs according to our typology. In addition, we present a classification model that fuses language and visual features for VGP classification on our dataset. Experiments indicate that joint language and vision representation learning is important for VGP classification. We further demonstrate that our VGP typology can boost the performance of visually grounded textual entailment. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier | en |
dc.rights | © 2021 The Author(s). Published by Elsevier Inc. | en |
dc.rights | This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license. | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Vision and language | en |
dc.subject | Image interpretation | en |
dc.subject | Visual grounded paraphrases | en |
dc.subject | Semantic typology | en |
dc.subject | Dataset | en |
dc.title | The Semantic Typology of Visually Grounded Paraphrases | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Computer Vision and Image Understanding | en |
dc.identifier.volume | 215 | - |
dc.relation.doi | 10.1016/j.cviu.2021.103333 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 103333 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 18H03264 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H03264/ | - |
dc.identifier.pissn | 1077-3142 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 知識ベースを活用した視覚情報に関する質疑応答システムの実現 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス