このアイテムのアクセス数: 233

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.neucom.2021.12.076.pdf1.84 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorZhao, Yutingen
dc.contributor.authorKomachi, Mamoruen
dc.contributor.authorKajiwara, Tomoyukien
dc.contributor.authorChu, Chenhuien
dc.date.accessioned2022-01-11T08:06:47Z-
dc.date.available2022-01-11T08:06:47Z-
dc.date.issued2022-03-
dc.identifier.urihttp://hdl.handle.net/2433/267428-
dc.description.abstractWe propose a multimodal neural machine translation (MNMT) method with semantic image regions called region-attentive multimodal neural machine translation (RA-NMT). Existing studies on MNMT have mainly focused on employing global visual features or equally sized grid local visual features extracted by convolutional neural networks (CNNs) to improve translation performance. However, they neglect the effect of semantic information captured inside the visual features. This study utilizes semantic image regions extracted by object detection for MNMT and integrates visual and textual features using two modality-dependent attention mechanisms. The proposed method was implemented and verified on two neural architectures of neural machine translation (NMT): recurrent neural network (RNN) and self-attention network (SAN). Experimental results on different language pairs of Multi30k dataset show that our proposed method improves over baselines and outperforms most of the state-of-the-art MNMT methods. Further analysis demonstrates that the proposed method can achieve better translation performance because of its better visual feature use.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Authors. Published by Elsevier B.V.en
dc.rightsThis is an open access article under the Creative Commons Attribution 4.0 International license.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectMultimodal neural machine translationen
dc.subjectRecurrent neural networken
dc.subjectSelf-attention networken
dc.subjectObject detectionen
dc.subjectSemantic image regionsen
dc.titleRegion-Attentive Multimodal Neural Machine Translationen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNeurocomputingen
dc.identifier.volume476-
dc.identifier.spage1-
dc.identifier.epage13-
dc.relation.doi10.1016/j.neucom.2021.12.076-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber19K20343-
datacite.awardNumber18H06465-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20343/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K21533/-
dc.identifier.pissn0925-2312-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleマルチモーダルデータからの対訳資源の抽出によるニューラル機械翻訳ja
jpcoar.awardTitleマルチモーダル品質推定に基づく機械翻訳モデルの高度化ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons