このアイテムのアクセス数: 233
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.neucom.2021.12.076.pdf | 1.84 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Zhao, Yuting | en |
dc.contributor.author | Komachi, Mamoru | en |
dc.contributor.author | Kajiwara, Tomoyuki | en |
dc.contributor.author | Chu, Chenhui | en |
dc.date.accessioned | 2022-01-11T08:06:47Z | - |
dc.date.available | 2022-01-11T08:06:47Z | - |
dc.date.issued | 2022-03 | - |
dc.identifier.uri | http://hdl.handle.net/2433/267428 | - |
dc.description.abstract | We propose a multimodal neural machine translation (MNMT) method with semantic image regions called region-attentive multimodal neural machine translation (RA-NMT). Existing studies on MNMT have mainly focused on employing global visual features or equally sized grid local visual features extracted by convolutional neural networks (CNNs) to improve translation performance. However, they neglect the effect of semantic information captured inside the visual features. This study utilizes semantic image regions extracted by object detection for MNMT and integrates visual and textual features using two modality-dependent attention mechanisms. The proposed method was implemented and verified on two neural architectures of neural machine translation (NMT): recurrent neural network (RNN) and self-attention network (SAN). Experimental results on different language pairs of Multi30k dataset show that our proposed method improves over baselines and outperforms most of the state-of-the-art MNMT methods. Further analysis demonstrates that the proposed method can achieve better translation performance because of its better visual feature use. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2022 The Authors. Published by Elsevier B.V. | en |
dc.rights | This is an open access article under the Creative Commons Attribution 4.0 International license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Multimodal neural machine translation | en |
dc.subject | Recurrent neural network | en |
dc.subject | Self-attention network | en |
dc.subject | Object detection | en |
dc.subject | Semantic image regions | en |
dc.title | Region-Attentive Multimodal Neural Machine Translation | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Neurocomputing | en |
dc.identifier.volume | 476 | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 13 | - |
dc.relation.doi | 10.1016/j.neucom.2021.12.076 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K20343 | - |
datacite.awardNumber | 18H06465 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20343/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K21533/ | - |
dc.identifier.pissn | 0925-2312 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | マルチモーダルデータからの対訳資源の抽出によるニューラル機械翻訳 | ja |
jpcoar.awardTitle | マルチモーダル品質推定に基づく機械翻訳モデルの高度化 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス