このアイテムのアクセス数: 97

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2203-06.pdf1.75 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKATSURADA, MASANORIen
dc.contributor.alternative桂田, 昌紀ja
dc.contributor.transcriptionカツラダ, マサノリja-Kana
dc.date.accessioned2022-02-03T01:56:20Z-
dc.date.available2022-02-03T01:56:20Z-
dc.date.issued2021-11-
dc.identifier.urihttp://hdl.handle.net/2433/267788-
dc.description.abstractThis is a pre-announcement version of the forthcoming paper [Complete asymptotic expansions for the transformed Lerch zeta-functions via the LaplaceMellin and Riemann-Liouville operators, preprint.]. For a complex variable s, and any real parameters a and λ with a > 0, the Lerch zeta-function φ(s, a, λ) is defined by the Dirichlet series Σ[∞][l=0]e(λl)(a + l)⁻[s] (Res> 1), and its meromorphic continuation over the whole s-plane, where e(λ) = e[2πiλ], and the domain of the parameter a can be extended to the whole sector |arg z| < π through the procedure in [M. Katsurada, Power series and asymptotic series associated with the Lerch zeta-function, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 167-170.]. It is the principal aim of the present article to treat asymptotic aspects of the transformed functions obtained by applying the Laplace-Mellin and Riemann-Liouville operators (in terms of the variables), which are denoted by LM[α][z;T] and RL[α, β][z;T] respectively, to a slight modification, φ*(s, a, λ), of φ(s, a, λ). For any m ∈ ℤ, let (φ*)[(m)](s, a, λ) denote the mth derivative with respect to s if m ≥ 0, and the |m|th primitive defined with its initial point at s + ∞ if m < 0. We shall then show that complete asymptotic expansions exist, if a > 1, for .LM[α][z;T](φ*)[(m)](s+τ, a, λ) and for RL[α, β][z;T](φ*)[(m)](s+τ, a, λ) (Theorems 1-4), as well as for their severa.l iterated variants (Theorems 5-10), when the pivotal parameter z of the transforms tends to both O and oo through appropriate sectors. Most of our results include any vertical ha.If-lines in their respective regions of validity; this allows us to deduce complete asymptotic expansions for the relevant transforms through arbitrary vertical half-lines, upon taking (s, z) = (a, it) with any σ ∈ ℝ, when t → ±∞ (Corollaries 2.1, 4.1, 6.1 and 8.1).en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject11M35en
dc.subject11M06en
dc.subjectLerch zeta-functionen
dc.subjectLaplace-Mellin Transformen
dc.subjectRiemann-Liouville transformen
dc.subjectMellin-Barnes integralen
dc.subjectasymptotic expansionen
dc.subjectpower series expansionen
dc.subjectweighted mean valueen
dc.subject.ndc410-
dc.titleCOMPLETE ASYMPTOTIC EXPANSIONS FOR THE TRANSFORMED LERCH ZETA-FUNCTIONS VIA THE LAPLACE-MELLIN AND RIEMANN-LIOUVILLE OPERATORS (PRE-ANNOUNCEMENT) (Problems and prospects in Analytic Number Theory)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2203-
dc.identifier.spage56-
dc.identifier.epage67-
dc.textversionpublisher-
dc.sortkey06-
dc.addressDEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITYen
dc.address.alternative慶應義塾大学 経済学部 数学教室ja
dcterms.accessRightsopen access-
datacite.awardNumber26400021-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26400021/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleゼータ関数・テータ関数の多重母関数 --その定式化と挙動解明--ja
出現コレクション:2203 解析的整数論の諸問題と展望

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。