このアイテムのアクセス数: 97
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2203-06.pdf | 1.75 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | KATSURADA, MASANORI | en |
dc.contributor.alternative | 桂田, 昌紀 | ja |
dc.contributor.transcription | カツラダ, マサノリ | ja-Kana |
dc.date.accessioned | 2022-02-03T01:56:20Z | - |
dc.date.available | 2022-02-03T01:56:20Z | - |
dc.date.issued | 2021-11 | - |
dc.identifier.uri | http://hdl.handle.net/2433/267788 | - |
dc.description.abstract | This is a pre-announcement version of the forthcoming paper [Complete asymptotic expansions for the transformed Lerch zeta-functions via the LaplaceMellin and Riemann-Liouville operators, preprint.]. For a complex variable s, and any real parameters a and λ with a > 0, the Lerch zeta-function φ(s, a, λ) is defined by the Dirichlet series Σ[∞][l=0]e(λl)(a + l)⁻[s] (Res> 1), and its meromorphic continuation over the whole s-plane, where e(λ) = e[2πiλ], and the domain of the parameter a can be extended to the whole sector |arg z| < π through the procedure in [M. Katsurada, Power series and asymptotic series associated with the Lerch zeta-function, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 167-170.]. It is the principal aim of the present article to treat asymptotic aspects of the transformed functions obtained by applying the Laplace-Mellin and Riemann-Liouville operators (in terms of the variables), which are denoted by LM[α][z;T] and RL[α, β][z;T] respectively, to a slight modification, φ*(s, a, λ), of φ(s, a, λ). For any m ∈ ℤ, let (φ*)[(m)](s, a, λ) denote the mth derivative with respect to s if m ≥ 0, and the |m|th primitive defined with its initial point at s + ∞ if m < 0. We shall then show that complete asymptotic expansions exist, if a > 1, for .LM[α][z;T](φ*)[(m)](s+τ, a, λ) and for RL[α, β][z;T](φ*)[(m)](s+τ, a, λ) (Theorems 1-4), as well as for their severa.l iterated variants (Theorems 5-10), when the pivotal parameter z of the transforms tends to both O and oo through appropriate sectors. Most of our results include any vertical ha.If-lines in their respective regions of validity; this allows us to deduce complete asymptotic expansions for the relevant transforms through arbitrary vertical half-lines, upon taking (s, z) = (a, it) with any σ ∈ ℝ, when t → ±∞ (Corollaries 2.1, 4.1, 6.1 and 8.1). | en |
dc.language.iso | eng | - |
dc.publisher | 京都大学数理解析研究所 | ja |
dc.publisher.alternative | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.subject | 11M35 | en |
dc.subject | 11M06 | en |
dc.subject | Lerch zeta-function | en |
dc.subject | Laplace-Mellin Transform | en |
dc.subject | Riemann-Liouville transform | en |
dc.subject | Mellin-Barnes integral | en |
dc.subject | asymptotic expansion | en |
dc.subject | power series expansion | en |
dc.subject | weighted mean value | en |
dc.subject.ndc | 410 | - |
dc.title | COMPLETE ASYMPTOTIC EXPANSIONS FOR THE TRANSFORMED LERCH ZETA-FUNCTIONS VIA THE LAPLACE-MELLIN AND RIEMANN-LIOUVILLE OPERATORS (PRE-ANNOUNCEMENT) (Problems and prospects in Analytic Number Theory) | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AN00061013 | - |
dc.identifier.jtitle | 数理解析研究所講究録 | ja |
dc.identifier.volume | 2203 | - |
dc.identifier.spage | 56 | - |
dc.identifier.epage | 67 | - |
dc.textversion | publisher | - |
dc.sortkey | 06 | - |
dc.address | DEPARTMENT OF MATHEMATICS, FACULTY OF ECONOMICS, KEIO UNIVERSITY | en |
dc.address.alternative | 慶應義塾大学 経済学部 数学教室 | ja |
dcterms.accessRights | open access | - |
datacite.awardNumber | 26400021 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-26400021/ | - |
dc.identifier.pissn | 1880-2818 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ゼータ関数・テータ関数の多重母関数 --その定式化と挙動解明-- | ja |
出現コレクション: | 2203 解析的整数論の諸問題と展望 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。