このアイテムのアクセス数: 157
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2204-16.pdf | 5.79 MB | Adobe PDF | 見る/開く |
タイトル: | The Zelevinsky-Aubert duality for classical groups (Automorphic forms, Automorphic representations, Galois representations, and its related topics) |
著者: | Atobe, Hiraku |
著者名の別形: | 跡部, 発 |
発行日: | Dec-2021 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2204 |
開始ページ: | 150 |
終了ページ: | 158 |
抄録: | In 1980, Zelevinsky [14] studied the representation theory of p-adic general linear groups. He introduced an involution on the Grothendieck group of smooth representations of finite length, which exchanges the trivial representation with the Steinberg representation. In fact, he conjectured that it preserves the irreducibility. Aubert [5] extended this involution to p-adic reductive groups, which is now called the Zelevinsky-Aubert duality. It is expected that this duality preserves the unitarity. In this article, based on the joint work with Alberto Mfnguez [3], we give an algorithm to compute the Zelevinsky-Aubert duality for odd special orthogonal groups or symplectic groups. |
URI: | http://hdl.handle.net/2433/267816 |
出現コレクション: | 2204 保型形式,保型表現, ガロア表現とその周辺 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。