このアイテムのアクセス数: 155

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.engstruct.2021.112859.pdf3.65 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorDo, Bachen
dc.contributor.authorOhsaki, Makotoen
dc.contributor.authorYamakawa, Makotoen
dc.contributor.alternative大﨑, 純ja
dc.date.accessioned2022-02-08T03:04:54Z-
dc.date.available2022-02-08T03:04:54Z-
dc.date.issued2021-10-
dc.identifier.urihttp://hdl.handle.net/2433/267874-
dc.description.abstractThis work proposes a Bayesian optimization (BO) method for solving multi-objective robust design optimization (RDO) problems of steel frames under aleatory uncertainty in external loads and material properties. Joint and individual probabilistic constrained RDO problems are formulated to consider two different ways the frame reaches its collapse state. Each problem involves three conflicting objective functions, namely, the total mass of the frame, the mean and variance of the maximum inter-story drift. Since the uncertain objective and probabilistic constraint functions of both problems are implicit within a finite element analysis program and the computation of the probabilistic constraints is an NP-hard problem, BO is used to guide the optimization process toward better solutions after it completes an iteration and offers a set of near Pareto-optimal solutions when it terminates. Specifically, Bayesian regression models called Gaussian processes (GPs) serve as surrogates for the structural responses. Two acquisition functions are then developed for the two RDO problems and a maximization problem of these functions is formulated as a mixed-integer nonlinear programming (MINLP) problem. A new random search coupled with simulated annealing is devised to solve the MINLP problem, thereby locating the most promising point in the input variable space at which the current solutions maximize their chance to be improved and the GP models are refined before the BO starts a new iteration. A test problem and two design examples show that exact or good Pareto-optimal solutions to the RDO problems can be found by the proposed method with 20 iterations.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2021. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.en
dc.rightsThe full-text file will be made open to the public on 15 October 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectBayesian optimizationen
dc.subjectRobust design optimizationen
dc.subjectProbabilistic constraintsen
dc.subjectSteel framesen
dc.titleBayesian optimization for robust design of steel frames with joint and individual probabilistic constraintsen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleEngineering Structuresen
dc.identifier.volume245-
dc.relation.doi10.1016/j.engstruct.2021.112859-
dc.textversionauthor-
dc.identifier.artnum112859-
dcterms.accessRightsopen access-
datacite.date.available2023-10-15-
datacite.awardNumber19H02286-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H02286/-
dc.identifier.pissn0141-0296-
dc.identifier.eissn1873-7323-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle鋼構造骨組と免震支承の性能設計と最適化のための詳細有限要素解析システムの開発ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons