このアイテムのアクセス数: 115
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
jamc-d-20-0266.1.pdf | 9.72 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Duan, G. | en |
dc.contributor.author | Takemi, T. | en |
dc.contributor.alternative | 竹見, 哲也 | ja |
dc.date.accessioned | 2022-02-22T04:18:02Z | - |
dc.date.available | 2022-02-22T04:18:02Z | - |
dc.date.issued | 2021-07 | - |
dc.identifier.uri | http://hdl.handle.net/2433/268005 | - |
dc.description.abstract | The surface roughness aerodynamic parameters z0 (roughness length) and d (zero-plane displacement height) are vital to the accuracy of the Monin–Obukhov similarity theory. Deriving improved urban canopy parameterization (UCP) schemes within the conventional framework remains mathematically challenging. The current study explores the potential of a machine-learning (ML) algorithm, a random forest (RF), as a complement to the traditional UCP schemes. Using large-eddy simulation and ensemble sampling, in combination with nonlinear least squares regression of the logarithmic-layer wind profiles, a dataset of approximately 4.5 × 10³ samples is established for the aerodynamic parameters and the morphometric statistics, enabling the training of the ML model. While the prediction for d is not as good as the UCP after Kanda et al., the performance for z₀ is notable. The RF algorithm also categorizes z₀ and d with an exceptional performance score: the overall bell-shaped distributions are well predicted, and the ±0.5σ category (i.e., the 38% percentile) is competently captured (37.8% for z₀ and 36.5% for d). Among the morphometric features, the mean and maximum building heights (Have and Hmax, respectively) are found to be of predominant influence on the prediction of z₀ and d. A perhaps counterintuitive result is the considerably less striking importance of the building-height variability. Possible reasons are discussed. The feature importance scores could be useful for identifying the contributing factors to the surface aerodynamic characteristics. The results may shed some light on the development of ML-based UCP for mesoscale modeling. | en |
dc.language.iso | eng | - |
dc.publisher | American Meteorological Society | en |
dc.rights | © 2021 American Meteorological Society. | en |
dc.rights | The full-text file will be made open to the public on 22 January 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.subject | Atmosphere-land interaction | en |
dc.subject | Large eddy simulations | en |
dc.subject | Classification | en |
dc.subject | Regression | en |
dc.title | Predicting urban surface roughness aerodynamic parameters using random forest | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Applied Meteorology and Climatology | en |
dc.identifier.volume | 60 | - |
dc.identifier.issue | 7 | - |
dc.identifier.spage | 999 | - |
dc.identifier.epage | 1018 | - |
dc.relation.doi | 10.1175/jamc-d-20-0266.1 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2022-01-22 | - |
datacite.awardNumber | 18H01680 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18H01680/ | - |
dc.identifier.pissn | 1558-8432 | - |
dc.identifier.eissn | 1558-8424 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 気候変動に伴う都市における暴風災害リスクの評価 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。