このアイテムのアクセス数: 84

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2209-01.pdf7.52 MBAdobe PDF見る/開く
タイトル: SEQUENTIAL ENDS AND NONSTANDARD INFINITE BOUNDARIES OF COARSE SPACES (Research Trends on General Topology and its Related Fields)
著者: IMAMURA, TAKUMA
著者名の別形: 今村, 拓万
キーワード: 51F30
54J05
20F65
40A05
発行日: Jan-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2209
開始ページ: 1
終了ページ: 7
抄録: This paper is an addendum to the author's previous paper ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.]. Miller et al. [B. Miller, L. Stibich, and J. Moore, "An invariant of metric spaces under homologous equivalences, " Mathematics Exchange, vol. 7, no. 1, pp. 12-19, 2010.] introduced a functor σ: Coarse* → Sets, where Coarse* is the category of pointed coarse spaces and coarse maps. DeLyser et al. [M. DeLyser, B. LaBuz, and M. Tobash, "Sequential ends of metric spaces, " 2013, arXiv:1303.0711.] introduced a functor ε: Coarse. → Sets, and proved that ε coincides with σ on Metr* ( the full subcategory of metrisable spaces). Using techniques of nonstandard analysis, the author in ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.] provided a functor ι: l ⊆ Coarse, → Sets, where l is an arbitrary small full subcategory, and a natural transformation ω: σ ↾ l ⇒ ι. The surjectivity of ω has been proved for all proper geodesic metrisable spaces, while the injectivity has remained open. In this note, we first pointed out that w is the composition of two natural transformations φ ↾ l : σ ↾ l ⇒ ε ↾ l and ω' : ε ↾ l ⇒ ι, and then show that ω' is injective for all spaces in l. As a corollary, ω is injective for all metrisable spaces in l. This partially answers some of the problems posed in ["A nonstandard invariant of coarse spaces, " The Graduate Journal of Mathematics, vol. 5, no. 1, pp. 1-8, 2020.].
URI: http://hdl.handle.net/2433/268817
関連リンク: https://gradmath.org/2020/10/28/a-nonstandard-invariant-of-coarse-spaces/
出現コレクション:2209 一般位相幾何学の動向と諸分野との連携

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。