このアイテムのアクセス数: 1251
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
B88-05.pdf | 163.99 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | NAKAMURA, SHOHEI | en |
dc.date.accessioned | 2022-03-18T06:20:46Z | - |
dc.date.available | 2022-03-18T06:20:46Z | - |
dc.date.issued | 2021-12 | - |
dc.identifier.uri | http://hdl.handle.net/2433/268945 | - |
dc.description.abstract | This note is an announcement of forthcoming paper [J. Bennett and S, Nakamura, Tomography bounds for the Fourier extension operator and applications, Math. Ann. 380 (2021), 119–159.] which is a work with Professor Jonathan Bennett (University of Birmingham) and so the main purpose is to exhibit results in [J. Bennett and S, Nakamura, Tomography bounds for the Fourier extension operator and applications, Math. Ann. 380 (2021), 119–159.] especially related to the weighted norm estimate for the Fourier extension operator known as Stein and Mizohata-Takeuchi conjectures. To these open problems in [J. Bennett and S, Nakamura, Tomography bounds for the Fourier extension operator and applications, Math. Ann. 380 (2021), 119–159.] we apply the approach using the X-ray tomography principle which has its origin in work of Planchon and Vega [F. Planchon, L. Vega, Bilinear virial identities and applications, Ann. Scient. Ec. Norm. Sup., 42 (2009), 263–292.]. We will explain our results with motivations and how to apply the tomography principle to the weighted norm estimate. We will also provide the explicit and detailed proof of Theorem 4.1 in [J. A. Barceló, J. Bennett, A. Carbery, A note on localised weighted estimates for the extension operator, J. Aust. Math. Soc. 84 (2008), 289–179.] by Barceló-Bennett-Carbery. | en |
dc.language.iso | eng | - |
dc.publisher | Research Institute for Mathematical Sciences, Kyoto University | en |
dc.publisher.alternative | 京都大学数理解析研究所 | ja |
dc.rights | © 2021 by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. All rights reserved. Printed in Japan. | en |
dc.subject | 42B20 | en |
dc.subject | Mizohata-Takeuchi conjecture | en |
dc.subject | Stein's conjecture | en |
dc.subject.ndc | 410 | - |
dc.title | Weighted norm inequalities for the Fourier extension operator via the X-ray tomography | en |
dc.type | departmental bulletin paper | - |
dc.type.niitype | Departmental Bulletin Paper | - |
dc.identifier.ncid | AA12196120 | - |
dc.identifier.jtitle | 数理解析研究所講究録別冊 | ja |
dc.identifier.volume | B88 | - |
dc.identifier.spage | 55 | - |
dc.identifier.epage | 73 | - |
dc.textversion | publisher | - |
dc.sortkey | 05 | - |
dc.address | Department of Mathematics and Information Sciences, Tokyo Metropolitan University | en |
dc.address.alternative | 東京都立大学 | ja |
dc.relation.url | https://doi.org/10.1007/s00208-020-02131-0 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17J01766 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-17J01766/ | - |
dc.identifier.pissn | 1881-6193 | - |
dc.identifier.jtitle-alternative | RIMS Kokyuroku Bessatsu | en |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 作用素の有界性を中心とした関数空間の研究と偏微分方程式への応用 | ja |
出現コレクション: | B88 Harmonic Analysis and Nonlinear Partial Differential Equations |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。