このアイテムのアクセス数: 183
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.istruc.2022.02.054.pdf | 11.09 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Do, Bach | en |
dc.contributor.author | Ohsaki, Makoto | en |
dc.contributor.alternative | 大﨑, 純 | ja |
dc.date.accessioned | 2022-06-23T06:55:55Z | - |
dc.date.available | 2022-06-23T06:55:55Z | - |
dc.date.issued | 2022-04 | - |
dc.identifier.uri | http://hdl.handle.net/2433/274530 | - |
dc.description.abstract | Properly modeling the cyclic elastoplastic behavior of structural steels is essential for establishing accurate analyses of structures subjected to earthquake excitation. However, identifying the underlying parameters to simulate such behavior is commonly hindered by the computational burden of carrying out many nonlinear analyses. This work proposes using Bayesian optimization (BO) for solving an inverse problem by which certain parameters for the nonlinear combined isotropic/kinematic hardening model are inferred from cyclic responses of a specimen or a structural component. BO minimizes an error function that represents the difference between the simulated responses and those measured experimentally while providing a global optimization framework for parameter identification, reducing the number of simulations, and addressing observational noise. It is found that BO has higher robustness as compared with some population-based optimization algorithms when expending the same number of simulations. Identification results for a specimen and a cantilever show a good ability of identified parameters to capture the behavior of structural steels under different cyclic loadings. They also suggest a possibility of identifying the parameters for multiple materials from cyclic tests of a structural component that is remarkable because cyclic material tests are difficult and usually not carried out before structural tests. Experimental measures from various loading histories should be simultaneously used for identification as they can mitigate the bias toward a specific loading history, which may lead the parameters to inaccurate prediction of material behavior under other loading histories. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2022. This manuscript version is made available under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license. | en |
dc.rights | The full-text file will be made open to the public on 1 April 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Elastoplastic consititutive law | en |
dc.subject | Parameter identification | en |
dc.subject | Structural steels | en |
dc.subject | Bayesian optimization | en |
dc.subject | Noise-free and noisy observations | en |
dc.subject | Cyclic loading | en |
dc.title | Bayesian optimization for inverse identification of cyclic constitutive law of structural steels from cyclic structural tests | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Structures | en |
dc.identifier.volume | 38 | - |
dc.identifier.spage | 1079 | - |
dc.identifier.epage | 1097 | - |
dc.relation.doi | 10.1016/j.istruc.2022.02.054 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2023-04-01 | - |
datacite.awardNumber | 19H02286 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02286/ | - |
dc.identifier.eissn | 2352-0124 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 鋼構造骨組と免震支承の性能設計と最適化のための詳細有限要素解析システムの開発 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス