このアイテムのアクセス数: 139

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
14686996.2020.1862630.pdf10.64 MBAdobe PDF見る/開く
タイトル: Synthesis of mesoscopic particles of multi-component rare earth permanent magnet compounds
著者: Trinh, T. Thuy
Kim, Jungryang
Sato, Ryota  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-7353-6880 (unconfirmed)
Matsumoto, Kenshi  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5680-330X (unconfirmed)
Teranishi, Toshiharu  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0002-5818-8865 (unconfirmed)
著者名の別形: 佐藤, 良太
松本, 憲志
寺西, 利治
キーワード: 102 Porous/ Nanoporous/ Nanostructured materials
103 Composites, 106 Metallic materials
203 Magnetics/ Spintronics/ Superconductors
301 Chemical syntheses/ processing
発行日: 2021
出版者: Taylor & Francis
誌名: Science and Technology of Advanced Materials
巻: 22
号: 1
開始ページ: 37
終了ページ: 54
抄録: Multielement rare earth (R)–transition metal (T) intermetallics are arguably the next generation of high-performance permanent magnetic materials for future applications in energy-saving and renewable energy technologies. Pseudobinary Sm₂Fe₁₇N₃ and (R, Zr)(Fe, Co, Ti)₁₂ (R = Nd, Sm) compounds have the highest potential to meet current demands for rare-earth-element-lean permanent magnets (PMs) with ultra-large energy product and operating temperatures up to 200°C. However, the synthesis of these materials, especially in the mesoscopic scale for maximizing the maximum energy product ((BH)max), remains a great challenge. Nonequilibrium processes are apparently used to overcome the phase-stabilization challenge in preparing the R–T intermetallics but have limited control of the material’s microstructure. More radical bottom-up nanoparticle approaches based on chemical synthesis have also been explored, owing to their potential to achieve the desired composition, structure, size, and shape. While a great achievement has been made for the Sm₂Fe₁₇N₃, progress in the synthesis of (R, Zr)(Fe, Co, Ti)₁₂ magnetic mesoscopic particles (MMPs) and R–T/T exchange-coupled nanocomposites (NCMs) with substantial coercivity (Hc) and remanence (Mr), respectively, remains marginal.
著作権等: © 2021 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://hdl.handle.net/2433/274620
DOI(出版社版): 10.1080/14686996.2020.1862630
PubMed ID: 33536840
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons