このアイテムのアクセス数: 458

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
bioinformatics_btab224.pdf1.22 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorLiu, Lizhien
dc.contributor.authorMamitsuka, Hiroshien
dc.contributor.authorZhu, Shanfengen
dc.contributor.alternative馬見塚, 拓ja
dc.date.accessioned2022-07-25T06:09:53Z-
dc.date.available2022-07-25T06:09:53Z-
dc.date.issued2021-10-01-
dc.identifier.urihttp://hdl.handle.net/2433/275588-
dc.description.abstract[Motivation] Exploring the relationship between human proteins and abnormal phenotypes is of great importance in the prevention, diagnosis and treatment of diseases. The human phenotype ontology (HPO) is a standardized vocabulary that describes the phenotype abnormalities encountered in human diseases. However, the current HPO annotations of proteins are not complete. Thus, it is important to identify missing protein–phenotype associations.[Results] We propose HPOFiller, a graph convolutional network (GCN)-based approach, for predicting missing HPO annotations. HPOFiller has two key GCN components for capturing embeddings from complex network structures: (i) S-GCN for both protein–protein interaction network and HPO semantic similarity network to utilize network weights; (ii) Bi-GCN for the protein–phenotype bipartite graph to conduct message passing between proteins and phenotypes. The core idea of HPOFiller is to repeat run these two GCN modules consecutively over the three networks, to refine the embeddings. Empirical results of extremely stringent evaluation avoiding potential information leakage including cross-validation and temporal validation demonstrates that HPOFiller significantly outperforms all other state-of-the-art methods. In particular, the ablation study shows that batch normalization contributes the most to the performance. The further examination offers literature evidence for highly ranked predictions. Finally using known disease-HPO term associations, HPOFiller could suggest promising, unknown disease–gene associations, presenting possible genetic causes of human disorders.en
dc.language.isoeng-
dc.publisherOxford University Press (OUP)en
dc.rightsThis is a pre-copyedited, author-produced PDF of an article accepted for publication in 'Bioinformatics' following peer review. The version of record [Bioinformatics, Volume 37, Issue 19, 1 October 2021, Pages 3328–3336] is available online at: https://doi.org/10.1093/bioinformatics/btab224en
dc.rightsThe full-text file will be made open to the public on 06 April 2022 in accordance with publisher's 'Terms and Conditions for Self-Archiving'en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.titleHPOFiller: identifying missing protein–phenotype associations by graph convolutional networken
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBioinformaticsen
dc.identifier.volume37-
dc.identifier.issue19-
dc.identifier.spage3328-
dc.identifier.epage3336-
dc.relation.doi10.1093/bioinformatics/btab224-
dc.textversionauthor-
dc.identifier.pmid33822886-
dcterms.accessRightsopen access-
datacite.date.available2022-04-06-
datacite.awardNumberJPMJAC1503-
datacite.awardNumber19H04169-
datacite.awardNumber.urihttps://projectdb.jst.go.jp/grant/JST-PROJECT-15666456/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H04169/-
dc.identifier.pissn1367-4803-
dc.identifier.eissn1460-2059-
jpcoar.funderName科学技術振興機構ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle濃厚ポリマーブラシのレジリエンシー強化とトライボロジー応用ja
jpcoar.awardTitle複数のテンソルからの効率的なデータ構造推定ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。