このアイテムのアクセス数: 234

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
AJRUA6.0001203.pdf5.37 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorJiang, Wen-Jieen
dc.contributor.authorKim, Chul-Wooen
dc.contributor.authorGoi, Yoshinaoen
dc.contributor.authorZhang, Feng-Liangen
dc.contributor.alternative姜, 文杰ja
dc.contributor.alternative金, 哲佑ja
dc.contributor.alternative五井, 良直ja
dc.date.accessioned2022-09-22T07:10:28Z-
dc.date.available2022-09-22T07:10:28Z-
dc.date.issued2022-03-01-
dc.identifier.urihttp://hdl.handle.net/2433/276348-
dc.description.abstractModal properties are recognized as indicators reflecting structural condition in structural health monitoring (SHM). However, changing environmental and operational variables (EOVs) cause variability in the identified modal parameters and subsequently obscure damage effects. To address the issue caused by EOV-related variability, this study investigated the variability of modal frequencies in long-term SHM of a steel plate-girder bridge. A Bayesian fast Fourier transform (FFT) method was used for operational modal analysis in a probabilistic viewpoint. Bayesian linear regression (BLR) and Gaussian process regression (GPR) models were utilized to capture the variability in the identified most probable values (MPVs) of modal frequencies as temperature-driven models, and the limitation of these models for data normalization with latent EOVs is discussed. To overcome the interference of latent EOVs indirectly, a long short-term memory (LSTM) network was established to trace the variability as an autocorrelated process, with a traditional seasonal autoregressive integrated moving average (SARIMA) model as a benchmark. Finally, an anomaly detection method based on residuals of one-step-ahead predictions by LSTM was proposed associating with the Mann-Whitney U-test.en
dc.language.isoeng-
dc.publisherAmerican Society of Civil Engineers (ASCE)en
dc.rightsThis material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/AJRUA6.0001203.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectAnomaly detectionen
dc.subjectEnvironmental and operational variables (EOVs)en
dc.subjectFast Bayesian FFT methoden
dc.subjectLong short-term memory (LSTM)en
dc.subjectSeasonal autoregressive integrated moving average (SARIMA)en
dc.titleData Normalization and Anomaly Detection in a Steel Plate-Girder Bridge Using LSTMen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineeringen
dc.identifier.volume8-
dc.identifier.issue1-
dc.relation.doi10.1061/AJRUA6.0001203-
dc.textversionauthor-
dc.identifier.artnum04021082-
dcterms.accessRightsopen access-
datacite.awardNumber19H02225-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02225/-
dc.identifier.eissn2376-7642-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle構造ヘルスモニタリングの高度化のためのベイズ型構造同定と情報融合の提案ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。