このアイテムのアクセス数: 234
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
AJRUA6.0001203.pdf | 5.37 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Jiang, Wen-Jie | en |
dc.contributor.author | Kim, Chul-Woo | en |
dc.contributor.author | Goi, Yoshinao | en |
dc.contributor.author | Zhang, Feng-Liang | en |
dc.contributor.alternative | 姜, 文杰 | ja |
dc.contributor.alternative | 金, 哲佑 | ja |
dc.contributor.alternative | 五井, 良直 | ja |
dc.date.accessioned | 2022-09-22T07:10:28Z | - |
dc.date.available | 2022-09-22T07:10:28Z | - |
dc.date.issued | 2022-03-01 | - |
dc.identifier.uri | http://hdl.handle.net/2433/276348 | - |
dc.description.abstract | Modal properties are recognized as indicators reflecting structural condition in structural health monitoring (SHM). However, changing environmental and operational variables (EOVs) cause variability in the identified modal parameters and subsequently obscure damage effects. To address the issue caused by EOV-related variability, this study investigated the variability of modal frequencies in long-term SHM of a steel plate-girder bridge. A Bayesian fast Fourier transform (FFT) method was used for operational modal analysis in a probabilistic viewpoint. Bayesian linear regression (BLR) and Gaussian process regression (GPR) models were utilized to capture the variability in the identified most probable values (MPVs) of modal frequencies as temperature-driven models, and the limitation of these models for data normalization with latent EOVs is discussed. To overcome the interference of latent EOVs indirectly, a long short-term memory (LSTM) network was established to trace the variability as an autocorrelated process, with a traditional seasonal autoregressive integrated moving average (SARIMA) model as a benchmark. Finally, an anomaly detection method based on residuals of one-step-ahead predictions by LSTM was proposed associating with the Mann-Whitney U-test. | en |
dc.language.iso | eng | - |
dc.publisher | American Society of Civil Engineers (ASCE) | en |
dc.rights | This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://doi.org/10.1061/AJRUA6.0001203. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | Anomaly detection | en |
dc.subject | Environmental and operational variables (EOVs) | en |
dc.subject | Fast Bayesian FFT method | en |
dc.subject | Long short-term memory (LSTM) | en |
dc.subject | Seasonal autoregressive integrated moving average (SARIMA) | en |
dc.title | Data Normalization and Anomaly Detection in a Steel Plate-Girder Bridge Using LSTM | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering | en |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 1 | - |
dc.relation.doi | 10.1061/AJRUA6.0001203 | - |
dc.textversion | author | - |
dc.identifier.artnum | 04021082 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19H02225 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H02225/ | - |
dc.identifier.eissn | 2376-7642 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 構造ヘルスモニタリングの高度化のためのベイズ型構造同定と情報融合の提案 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。