ダウンロード数: 87

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2021.3077514.pdf2.56 MBAdobe PDF見る/開く
タイトル: Region Proposal and Regression Network for Fishing Spots Detection From Sea Environment
著者: Fu, An
Patil, Kalpesh Ravindra
Iiyama, Masaaki
著者名の別形: 飯山, 将晃
キーワード: Ocean temperature
Sea surface
Support vector machines
Proposals
Training
Object detection
Temperature distribution
Faster R-CNN
region proposal network
support vector regression
skipjack tuna
発行日: 2021
出版者: Institute of Electrical and Electronics Engineers (IEEE)
誌名: IEEE Access
巻: 9
開始ページ: 68366
終了ページ: 68375
抄録: In this paper, a two-stage method is proposed for predicting the catch of skipjack tuna (Katsuwonus pelamis) from a 2D sea environmental pattern. Following the assumption that sea water temperature and sea surface height (SSH) which fishermen often use for finding fishing spots has a correlation with the skipjack tuna catch, a new approach of using Faster R-CNN in object detection is proposed. The proposed method consists of two part. In the first part, taking a sea temperature map as input, Faster R-CNN extracts the candidates of where skipjack tuna would be on the map in order to imitate the behaviors of fishers. In the second part, Support Vector Regression (SVR) estimates the catch amount in each candidate. Fater R-CNN is applied to several sea environmental patterns with three different loss functions and compares each performance. The proposed model is evaluated by comparing the result with average fishers' ability on the skipjack tuna catches and several criteria for evaluating the proposed model. The results show that the proposed method is able to outperform the average fishers' ability by an average of 3%.
著作権等: This work is licensed under a Creative Commons Attribution 4.0 License.
URI: http://hdl.handle.net/2433/276416
DOI(出版社版): 10.1109/ACCESS.2021.3077514
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons