このアイテムのアクセス数: 208
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
j.neunet.2022.08.015.pdf | 4.49 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Fujimoto, Keisuke | en |
dc.contributor.author | Hayashi, Kojiro | en |
dc.contributor.author | Katayama, Risa | en |
dc.contributor.author | Lee, Sehyung | en |
dc.contributor.author | Liang, Zhen | en |
dc.contributor.author | Yoshida, Wako | en |
dc.contributor.author | Ishii, Shin | en |
dc.contributor.alternative | 藤本, 啓介 | ja |
dc.contributor.alternative | 林, 浩次郎 | ja |
dc.contributor.alternative | 片山, 梨沙 | ja |
dc.contributor.alternative | 吉田, 和子 | ja |
dc.contributor.alternative | 石井, 信 | ja |
dc.date.accessioned | 2022-09-30T08:10:44Z | - |
dc.date.available | 2022-09-30T08:10:44Z | - |
dc.date.issued | 2022-11 | - |
dc.identifier.uri | http://hdl.handle.net/2433/276422 | - |
dc.description | 人間の視覚注意解析のための人工知能(AI)技術の開発に成功. 京都大学プレスリリース. 2022-09-29. | ja |
dc.description.abstract | Visual properties that primarily attract bottom-up attention are collectively referred to as saliency. In this study, to understand the neural activity involved in top-down and bottom-up visual attention, we aim to prepare pairs of natural and unnatural images with common saliency. For this purpose, we propose an image transformation method based on deep neural networks that can generate new images while maintaining the consistent feature map, in particular the saliency map. This is an ill-posed problem because the transformation from an image to its corresponding feature map could be many-to-one, and in our particular case, the various images would share the same saliency map. Although stochastic image generation has the potential to solve such ill-posed problems, the most existing methods focus on adding diversity of the overall style/touch information while maintaining the naturalness of the generated images. To this end, we developed a new image transformation method that incorporates higher-dimensional latent variables so that the generated images appear unnatural with less context information but retain a high diversity of local image structures. Although such high-dimensional latent spaces are prone to collapse, we proposed a new regularization based on Kullback–Leibler divergence to avoid collapsing the latent distribution. We also conducted human experiments using our newly prepared natural and corresponding unnatural images to measure overt eye movements and functional magnetic resonance imaging, and found that those images induced distinctive neural activities related to top-down and bottom-up attentional processing. | en |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | en |
dc.rights | © 2022 The Author(s). Published by Elsevier Ltd. | en |
dc.rights | This is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license. | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | - |
dc.subject | Attention | en |
dc.subject | Image transformation | en |
dc.subject | Saliency map | en |
dc.subject | Deep learning | en |
dc.subject | Variational autoencoder | en |
dc.subject | Functional magnetic resonance imaging | en |
dc.title | Deep learning-based image deconstruction method with maintained saliency | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Neural Networks | en |
dc.identifier.volume | 155 | - |
dc.identifier.spage | 224 | - |
dc.identifier.epage | 241 | - |
dc.relation.doi | 10.1016/j.neunet.2022.08.015 | - |
dc.textversion | publisher | - |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | Graduate School of Informatics, Kyoto University | en |
dc.address | School of Biomedical Engineering, Health Science Center, Shenzhen University; Graduate School of Informatics, Kyoto University | en |
dc.address | Graduate School of Informatics, Kyoto University; Nuffield Department of Clinical Neurosciences, University of Oxford | en |
dc.address | Graduate School of Informatics, Kyoto University; ATR Neural Information Analysis Laboratories | en |
dc.identifier.pmid | 36081196 | - |
dc.relation.url | https://www.kyoto-u.ac.jp/ja/research-news/2022-09-29-2 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17H06310 | - |
datacite.awardNumber | 19H04180 | - |
datacite.awardNumber | 22H04998 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-17H06310/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04180/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H04998/ | - |
dc.identifier.pissn | 0893-6080 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 脳情報動態解明に資する多階層・多領野データ統合モデリング法の開発 | ja |
jpcoar.awardTitle | 脳の転移可能な機能単位からみる個性とメタ学習能力 | ja |
jpcoar.awardTitle | 敵対生成脳:マルチエージェント学習の計算理論、アルゴリズムとロボティクス応用 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス