このアイテムのアクセス数: 208

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.neunet.2022.08.015.pdf4.49 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorFujimoto, Keisukeen
dc.contributor.authorHayashi, Kojiroen
dc.contributor.authorKatayama, Risaen
dc.contributor.authorLee, Sehyungen
dc.contributor.authorLiang, Zhenen
dc.contributor.authorYoshida, Wakoen
dc.contributor.authorIshii, Shinen
dc.contributor.alternative藤本, 啓介ja
dc.contributor.alternative林, 浩次郎ja
dc.contributor.alternative片山, 梨沙ja
dc.contributor.alternative吉田, 和子ja
dc.contributor.alternative石井, 信ja
dc.date.accessioned2022-09-30T08:10:44Z-
dc.date.available2022-09-30T08:10:44Z-
dc.date.issued2022-11-
dc.identifier.urihttp://hdl.handle.net/2433/276422-
dc.description人間の視覚注意解析のための人工知能(AI)技術の開発に成功. 京都大学プレスリリース. 2022-09-29.ja
dc.description.abstractVisual properties that primarily attract bottom-up attention are collectively referred to as saliency. In this study, to understand the neural activity involved in top-down and bottom-up visual attention, we aim to prepare pairs of natural and unnatural images with common saliency. For this purpose, we propose an image transformation method based on deep neural networks that can generate new images while maintaining the consistent feature map, in particular the saliency map. This is an ill-posed problem because the transformation from an image to its corresponding feature map could be many-to-one, and in our particular case, the various images would share the same saliency map. Although stochastic image generation has the potential to solve such ill-posed problems, the most existing methods focus on adding diversity of the overall style/touch information while maintaining the naturalness of the generated images. To this end, we developed a new image transformation method that incorporates higher-dimensional latent variables so that the generated images appear unnatural with less context information but retain a high diversity of local image structures. Although such high-dimensional latent spaces are prone to collapse, we proposed a new regularization based on Kullback–Leibler divergence to avoid collapsing the latent distribution. We also conducted human experiments using our newly prepared natural and corresponding unnatural images to measure overt eye movements and functional magnetic resonance imaging, and found that those images induced distinctive neural activities related to top-down and bottom-up attentional processing.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Author(s). Published by Elsevier Ltd.en
dc.rightsThis is an open access article under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAttentionen
dc.subjectImage transformationen
dc.subjectSaliency mapen
dc.subjectDeep learningen
dc.subjectVariational autoencoderen
dc.subjectFunctional magnetic resonance imagingen
dc.titleDeep learning-based image deconstruction method with maintained saliencyen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleNeural Networksen
dc.identifier.volume155-
dc.identifier.spage224-
dc.identifier.epage241-
dc.relation.doi10.1016/j.neunet.2022.08.015-
dc.textversionpublisher-
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto Universityen
dc.addressSchool of Biomedical Engineering, Health Science Center, Shenzhen University; Graduate School of Informatics, Kyoto Universityen
dc.addressGraduate School of Informatics, Kyoto University; Nuffield Department of Clinical Neurosciences, University of Oxforden
dc.addressGraduate School of Informatics, Kyoto University; ATR Neural Information Analysis Laboratoriesen
dc.identifier.pmid36081196-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2022-09-29-2-
dcterms.accessRightsopen access-
datacite.awardNumber17H06310-
datacite.awardNumber19H04180-
datacite.awardNumber22H04998-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-17H06310/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H04180/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-22H04998/-
dc.identifier.pissn0893-6080-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle脳情報動態解明に資する多階層・多領野データ統合モデリング法の開発ja
jpcoar.awardTitle脳の転移可能な機能単位からみる個性とメタ学習能力ja
jpcoar.awardTitle敵対生成脳:マルチエージェント学習の計算理論、アルゴリズムとロボティクス応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons