このアイテムのアクセス数: 149

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.cmpb.2021.106129.pdf1.93 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSato, Noriakien
dc.contributor.authorUchino, Eiichiroen
dc.contributor.authorKojima, Ryosukeen
dc.contributor.authorHiragi, Shusukeen
dc.contributor.authorYanagita, Motokoen
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative佐藤, 憲明ja
dc.contributor.alternative内野, 詠一郎ja
dc.contributor.alternative小島, 諒介ja
dc.contributor.alternative平木, 秀輔ja
dc.contributor.alternative柳田, 素子ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2022-10-19T01:32:32Z-
dc.date.available2022-10-19T01:32:32Z-
dc.date.issued2021-07-
dc.identifier.urihttp://hdl.handle.net/2433/276797-
dc.description.abstractBackground: Acute kidney injury (AKI) occurs frequently in in-hospital patients, especially in the intensive care unit (ICU), due to various etiologies including septic shock. It is clinically important to identify high-risk patients at an early stage and perform the appropriate intervention. Methods: We proposed a system to predict AKI using one-dimensional convolutional neural networks (1D-CNN) with the real-time calculation of the probability of developing AKI, along with the visualization of the rationale behind prediction using score-weighted class activation mapping and guided backpropagation. The system was applied to predicting developing AKI based on the KDIGO guideline in time windows of 24 to 48 h using data of 0 to 24 h after admission to ICU. Results: The comparison result of multiple algorithms modeling time series data indicated that the proposed 1D-CNN model achieved higher performance compared to the other models, with the mean area under the receiver operating characteristic curve of 0.742 ± 0.010 for predicting stage 1, and 0.844 ± 0.029 for stage 2 AKI using the input of the vital signs, the demographic information, and serum creatinine values. The visualization results suggested the reasonable interpretation that time points with higher respiratory rate, lower blood pressure, as well as lower SpO2, had higher attention in terms of predicting AKI, and thus important for prediction. Conclusions: We presumed the proposed system's potential usefulness as it could be applied and transferred to almost any ICU setting that stored the time series data corresponding to vital signs.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2021 The Authors. Published by Elsevier B.V.en
dc.rightsThis is an open access article under the under the CC BY-ND license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectAcute kidney injuryen
dc.subjectConvolutional neural networksen
dc.subjectIntensive care uniten
dc.subjectVisualizationen
dc.titlePrediction and visualization of acute kidney injury in intensive care unit using one-dimensional convolutional neural networks based on routinely collected dataen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleComputer Methods and Programs in Biomedicineen
dc.identifier.volume206-
dc.relation.doi10.1016/j.cmpb.2021.106129-
dc.textversionpublisher-
dc.identifier.artnum106129-
dc.identifier.pmid34020177-
dcterms.accessRightsopen access-
datacite.awardNumber19K18321-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K18321/-
dc.identifier.pissn0169-2607-
dc.identifier.eissn1872-7565-
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle機械学習を用いた集中治療部における急性腎障害の発症予測と層別化ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons