このアイテムのアクセス数: 90

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
esurf-9-1091-2021.pdf4.85 MBAdobe PDF見る/開く
タイトル: Inverse modeling of turbidity currents using an artificial neural network approach: verification for field application
著者: Naruse, Hajime  kyouindb  KAKEN_id  orcid https://orcid.org/0000-0003-3863-3404 (unconfirmed)
Nakao, Kento
著者名の別形: 成瀬, 元
発行日: 3-Sep-2021
出版者: Copernicus GmbH
誌名: Earth Surface Dynamics
巻: 9
号: 5
開始ページ: 1091
終了ページ: 1109
抄録: Although in situ measurements in modern frequently occurring turbidity currents have been performed, the flow characteristics of turbidity currents that occur only once every 100 years and deposit turbidites over a large area have not yet been elucidated. In this study, we propose a method for estimating the paleo-hydraulic conditions of turbidity currents from ancient turbidites by using machine learning. In this method, we hypothesize that turbidity currents result from suspended sediment clouds that flow down a steep slope in a submarine canyon and into a gently sloping basin plain. Using inverse modeling, we reconstruct seven model input parameters including the initial flow depth, the sediment concentration, and the basin slope. A reasonable number (3500) of repetitions of numerical simulations using a one-dimensional layer-averaged model under various input parameters generates a dataset of the characteristic features of turbidites. This artificial dataset is then used for supervised training of a deep-learning neural network (NN) to produce an inverse model capable of estimating paleo-hydraulic conditions from data on the ancient turbidites. The performance of the inverse model is tested using independently generated datasets. Consequently, the NN successfully reconstructs the flow conditions of the test datasets. In addition, the proposed inverse model is quite robust to random errors in the input data. Judging from the results of subsampling tests, inversion of turbidity currents can be conducted if an individual turbidite can be correlated over 10 km at approximately 1 km intervals. These results suggest that the proposed method can sufficiently analyze field-scale turbidity currents.
著作権等: © Author(s) 2021.
This work is distributed under the Creative Commons Attribution 4.0 License.
URI: http://hdl.handle.net/2433/276913
DOI(出版社版): 10.5194/esurf-9-1091-2021
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons