ダウンロード数: 33
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2220-19.pdf | 10.78 MB | Adobe PDF | 見る/開く |
タイトル: | A Comprehensive Analysis of Proportional Intensity-based Software Reliability Models with Covariates (New Developments on Mathematical Decision Making Under Uncertainty) |
著者: | Li, Siqiao Dohi, Tadashi Okamura, Hiroyuki |
著者名の別形: | 土肥, 正 岡村, 寛之 |
発行日: | May-2022 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2220 |
開始ページ: | 175 |
終了ページ: | 183 |
抄録: | The black-box approach based on stochastic software reliability models is a simple methodology with only software fault data in order to describe the temporal behavior of fault-detection processes, but fails to incorporate some significant development metrics data observed in the development process. In this paper we develop proportional intensity-based software reliability models with time-dependent metrics, and propose a statistical framework to assess the software reliability with the timedependent covariate as well as the software fault data. The resulting models are similar to the usual proportional hazard model, but possess somewhat different covariate structure from the existing one. We compare these metricsbased software reliability models with eleven well-known non-homogeneous Poisson process models, which are the special cases of our models, and evaluate quantitatively the goodness-of-fit and prediction. As an important result, the accuracy on reliability assessment strongly depends on the kind of software metrics used for analysis and can be improved by incorporating the time-dependent metrics data in modeling. |
URI: | http://hdl.handle.net/2433/277159 |
出現コレクション: | 2220 不確実環境下における意思決定数理の新展開 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。