ダウンロード数: 26

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2223-08.pdf1.09 MBAdobe PDF見る/開く
タイトル: Bratteli-Vershik models for zero-dimensional systems (Recent Developments in Dynamical Systems and their Applications)
著者: SHIMOMURA, TAKASHI
著者名の別形: 下村, 尚司
キーワード: 37B05
37B10
basic set
zero-dimensional systems
Bratteli-Vershik models
発行日: Jun-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2223
開始ページ: 72
終了ページ: 74
抄録: Herman, Putnam and Skau (R. H. Herman, I. F. Putnam and C. F. Skau (1992)) showed some correspondence between the pointed topological conjugacy classes of essentially minimal compact zero-dimensional systems (χ, φ, y) and the equivalence classes of essentially simple ordered Bratteli diagrams. In fact, using these, they made deep investigations into C*-algebraic theories. Later Medynets (K. Medynets (2006)) showed that every Cantor aperiodic system is homeomorphic to the Vershik map acting on the space of infinite paths of an ordered Bratteli diagram. He produced an equivalent class of ordered Bratteli diagrams from a topologically conjugacy classes of a triple (χ, φ, B), in which B is a particular closed set that is called a basic set. In this manuscript, we explain some basic concepts that can extend some topology of their works to the case in which there may be a lot of periodic orbits. In doing this, the work by Downarowicz and Karpel (T. Downarowicz and 0. Karpel(2019)) plays an important role.
URI: http://hdl.handle.net/2433/277203
出現コレクション:2223 力学系理論の最近の進展とその応用

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。