このアイテムのアクセス数: 93
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
s00023-022-01195-9.pdf | 507.34 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Hayashi, Masayuki | en |
dc.contributor.alternative | 林, 雅行 | ja |
dc.date.accessioned | 2022-11-24T04:11:46Z | - |
dc.date.available | 2022-11-24T04:11:46Z | - |
dc.date.issued | 2022-12 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277460 | - |
dc.description.abstract | We consider the following nonlinear Schrödinger equation of derivative type: i∂tu+∂²xu+i|u|²∂xu+b|u|⁴u=0, (t, x)∈R×R, b∈R. (1) If b=0, this equation is a gauge equivalent form of well-known derivative nonlinear Schrödinger (DNLS) equation. The soliton profile of the DNLS equation satisfies a certain double power elliptic equation with cubic–quintic nonlinearities. The quintic nonlinearity in (1) only affects the coefficient in front of the quintic term in the elliptic equation, so the additional nonlinearity is natural as a perturbation preserving soliton profiles of the DNLS equation. If b>−3/16, Eq. (1) has algebraically decaying solitons, which we call algebraic solitons, as well as exponentially decaying solitons. In this paper, we study stability properties of solitons for (1) by variational approach, and prove that if b<0, all solitons including algebraic solitons are stable in the energy space. The existence of stable algebraic solitons in (1) shows an interesting mathematical example because stable algebraic solitons are not known in the context of double power NLS equations. | en |
dc.language.iso | eng | - |
dc.publisher | Springer Nature | en |
dc.rights | This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00023-022-01195-9 | en |
dc.rights | The full-text file will be made open to the public on 24 May 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'. | en |
dc.rights | This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。 | en |
dc.subject | Derivative nonlinear Schrodinger equations | en |
dc.subject | Solitons | en |
dc.subject | Variational methods | en |
dc.subject | Orbital stability | en |
dc.title | Stability of Algebraic Solitons for Nonlinear Schrödinger Equations of Derivative Type: Variational Approach | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Annales Henri Poincaré | en |
dc.identifier.volume | 23 | - |
dc.identifier.issue | 12 | - |
dc.identifier.spage | 4249 | - |
dc.identifier.epage | 4277 | - |
dc.relation.doi | 10.1007/s00023-022-01195-9 | - |
dc.textversion | author | - |
dcterms.accessRights | open access | - |
datacite.date.available | 2023-05-24 | - |
datacite.awardNumber | 17J05828 | - |
datacite.awardNumber | 19J01504 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17J05828/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J01504/ | - |
dc.identifier.pissn | 1424-0637 | - |
dc.identifier.eissn | 1424-0661 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 非線形シュレディンガー方程式の数学解析 | ja |
jpcoar.awardTitle | 非線形分散型方程式におけるソリトンの数学解析とその応用 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このリポジトリに保管されているアイテムはすべて著作権により保護されています。