このアイテムのアクセス数: 93

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
s00023-022-01195-9.pdf507.34 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHayashi, Masayukien
dc.contributor.alternative林, 雅行ja
dc.date.accessioned2022-11-24T04:11:46Z-
dc.date.available2022-11-24T04:11:46Z-
dc.date.issued2022-12-
dc.identifier.urihttp://hdl.handle.net/2433/277460-
dc.description.abstractWe consider the following nonlinear Schrödinger equation of derivative type: i∂tu+∂²xu+i|u|²∂xu+b|u|⁴u=0, (t, x)∈R×R, b∈R. (1) If b=0, this equation is a gauge equivalent form of well-known derivative nonlinear Schrödinger (DNLS) equation. The soliton profile of the DNLS equation satisfies a certain double power elliptic equation with cubic–quintic nonlinearities. The quintic nonlinearity in (1) only affects the coefficient in front of the quintic term in the elliptic equation, so the additional nonlinearity is natural as a perturbation preserving soliton profiles of the DNLS equation. If b>−3/16, Eq. (1) has algebraically decaying solitons, which we call algebraic solitons, as well as exponentially decaying solitons. In this paper, we study stability properties of solitons for (1) by variational approach, and prove that if b<0, all solitons including algebraic solitons are stable in the energy space. The existence of stable algebraic solitons in (1) shows an interesting mathematical example because stable algebraic solitons are not known in the context of double power NLS equations.en
dc.language.isoeng-
dc.publisherSpringer Natureen
dc.rightsThis version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00023-022-01195-9en
dc.rightsThe full-text file will be made open to the public on 24 May 2023 in accordance with publisher's 'Terms and Conditions for Self-Archiving'.en
dc.rightsThis is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。en
dc.subjectDerivative nonlinear Schrodinger equationsen
dc.subjectSolitonsen
dc.subjectVariational methodsen
dc.subjectOrbital stabilityen
dc.titleStability of Algebraic Solitons for Nonlinear Schrödinger Equations of Derivative Type: Variational Approachen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAnnales Henri Poincaréen
dc.identifier.volume23-
dc.identifier.issue12-
dc.identifier.spage4249-
dc.identifier.epage4277-
dc.relation.doi10.1007/s00023-022-01195-9-
dc.textversionauthor-
dcterms.accessRightsopen access-
datacite.date.available2023-05-24-
datacite.awardNumber17J05828-
datacite.awardNumber19J01504-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17J05828/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J01504/-
dc.identifier.pissn1424-0637-
dc.identifier.eissn1424-0661-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle非線形シュレディンガー方程式の数学解析ja
jpcoar.awardTitle非線形分散型方程式におけるソリトンの数学解析とその応用ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。