このアイテムのアクセス数: 102

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
1742-5468_ac1403.pdf1.82 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorSakata, Ayakaen
dc.contributor.authorObuchi, Tomoyukien
dc.contributor.alternative坂田, 綾香ja
dc.contributor.alternative小渕, 智之ja
dc.date.accessioned2022-11-25T04:12:15Z-
dc.date.available2022-11-25T04:12:15Z-
dc.date.issued2021-09-
dc.identifier.urihttp://hdl.handle.net/2433/277481-
dc.description.abstractWe consider a reconstruction problem of sparse signals from a smaller number of measurements than the dimension formulated as a minimization problem of nonconvex sparse penalties: smoothly clipped absolute deviations and minimax concave penalties. The nonconvexity of these penalties is controlled by nonconvexity parameters, and the ℓ1 penalty is contained as a limit with respect to these parameters. The analytically-derived reconstruction limit overcomes that of the ℓ1 limit and is also expected to overcome the algorithmic limit of the Bayes-optimal setting when the nonconvexity parameters have suitable values. However, for small nonconvexity parameters, where the reconstruction of the relatively dense signals is theoretically expected, the algorithm known as approximate message passing (AMP), which is closely related to the analysis, cannot achieve perfect reconstruction leading to a gap from the analysis. Using the theory of state evolution, it is clarified that this gap can be understood on the basis of the shrinkage in the basin of attraction to the perfect reconstruction and also the divergent behavior of AMP in some regions. A part of the gap is mitigated by controlling the shapes of nonconvex penalties to guide the AMP trajectory to the basin of the attraction.en
dc.language.isoeng-
dc.publisherIOP Publishingen
dc.rights© 2021 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltden
dc.rightsOriginal content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.titlePerfect reconstruction of sparse signals with piecewise continuous nonconvex penalties and nonconvexity controlen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleJournal of Statistical Mechanics: Theory and Experimenten
dc.identifier.volume2021-
dc.relation.doi10.1088/1742-5468/ac1403-
dc.textversionpublisher-
dc.identifier.artnum093401-
dcterms.accessRightsopen access-
datacite.awardNumber19K20363-
datacite.awardNumber19H01812-
datacite.awardNumber18K11463-
datacite.awardNumber17H00764-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20363/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H01812/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K11463/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H00764/-
dc.identifier.eissn1742-5468-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle階層モデルにおけるベイズ的スパース推定に対するモデル選択理論の構成ja
jpcoar.awardTitleスピンから捉えるガラス・ジャミング転移の物理:ソフトマターから情報統計力学までja
jpcoar.awardTitleスパースモデリングと情報統計力学の共進化による柔軟な大規模逆問題解法の開発と応用ja
jpcoar.awardTitle半解析リサンプリング法の開発と整備:信頼性評価への統計力学的アプローチja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons