このアイテムのアクセス数: 102
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
1742-5468_ac1403.pdf | 1.82 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Sakata, Ayaka | en |
dc.contributor.author | Obuchi, Tomoyuki | en |
dc.contributor.alternative | 坂田, 綾香 | ja |
dc.contributor.alternative | 小渕, 智之 | ja |
dc.date.accessioned | 2022-11-25T04:12:15Z | - |
dc.date.available | 2022-11-25T04:12:15Z | - |
dc.date.issued | 2021-09 | - |
dc.identifier.uri | http://hdl.handle.net/2433/277481 | - |
dc.description.abstract | We consider a reconstruction problem of sparse signals from a smaller number of measurements than the dimension formulated as a minimization problem of nonconvex sparse penalties: smoothly clipped absolute deviations and minimax concave penalties. The nonconvexity of these penalties is controlled by nonconvexity parameters, and the ℓ1 penalty is contained as a limit with respect to these parameters. The analytically-derived reconstruction limit overcomes that of the ℓ1 limit and is also expected to overcome the algorithmic limit of the Bayes-optimal setting when the nonconvexity parameters have suitable values. However, for small nonconvexity parameters, where the reconstruction of the relatively dense signals is theoretically expected, the algorithm known as approximate message passing (AMP), which is closely related to the analysis, cannot achieve perfect reconstruction leading to a gap from the analysis. Using the theory of state evolution, it is clarified that this gap can be understood on the basis of the shrinkage in the basin of attraction to the perfect reconstruction and also the divergent behavior of AMP in some regions. A part of the gap is mitigated by controlling the shapes of nonconvex penalties to guide the AMP trajectory to the basin of the attraction. | en |
dc.language.iso | eng | - |
dc.publisher | IOP Publishing | en |
dc.rights | © 2021 The Author(s). Published on behalf of SISSA Medialab srl by IOP Publishing Ltd | en |
dc.rights | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. | en |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | - |
dc.title | Perfect reconstruction of sparse signals with piecewise continuous nonconvex penalties and nonconvexity control | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Journal of Statistical Mechanics: Theory and Experiment | en |
dc.identifier.volume | 2021 | - |
dc.relation.doi | 10.1088/1742-5468/ac1403 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 093401 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 19K20363 | - |
datacite.awardNumber | 19H01812 | - |
datacite.awardNumber | 18K11463 | - |
datacite.awardNumber | 17H00764 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19K20363/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19H01812/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-18K11463/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H00764/ | - |
dc.identifier.eissn | 1742-5468 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | 階層モデルにおけるベイズ的スパース推定に対するモデル選択理論の構成 | ja |
jpcoar.awardTitle | スピンから捉えるガラス・ジャミング転移の物理:ソフトマターから情報統計力学まで | ja |
jpcoar.awardTitle | スパースモデリングと情報統計力学の共進化による柔軟な大規模逆問題解法の開発と応用 | ja |
jpcoar.awardTitle | 半解析リサンプリング法の開発と整備:信頼性評価への統計力学的アプローチ | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス