このアイテムのアクセス数: 211

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
arXiv.2208.07199.pdf606.11 kBAdobe PDF見る/開く
タイトル: On The Complexity of Distance-$d$ Independent Set Reconfiguration
著者: HOANG, Duc Anh
キーワード: reconfiguration problem
distance-d independent set
computational complexity
token sliding
token jumping
05C85
68R10
発行日: 15-Aug-2022
開始ページ: 1
終了ページ: 14
抄録: For a fixed positive integer $d geq 2$, a distance-$d$ independent set (D$d$IS) of a graph is a vertex subset whose distance between any two members is at least $d$. Imagine that there is a token placed on each member of a D$d$IS. Two D$d$ISs are adjacent under Token Sliding ($mathsf{TS}$) if one can be obtained from the other by moving a token from one vertex to one of its unoccupied adjacent vertices. Under Token Jumping ($mathsf{TJ}$), the target vertex needs not to be adjacent to the original one. The Distance-$d$ Independent Set Reconfiguration (D$d$ISR) problem under $mathsf{TS}/mathsf{TJ}$ asks if there is a corresponding sequence of adjacent D$d$ISs that transforms one given D$d$IS into another. The problem for $d = 2$, also known as the Independent Set Reconfiguration problem, has been well-studied in the literature and its computational complexity on several graph classes has been known. In this paper, we study the computational complexity of D$d$ISR on different graphs under $mathsf{TS}$ and $mathsf{TJ}$ for any fixed $d geq 3$. On chordal graphs, we show that D$d$ISR under $mathsf{TJ}$ is in $mathtt{P}$ when $d$ is even and $mathtt{PSPACE}$-complete when $d$ is odd. On split graphs, there is an interesting complexity dichotomy: D$d$ISR is $mathtt{PSPACE}$-complete for $d = 2$ but in $mathtt{P}$ for $d=3$ under $mathsf{TS}$, while under $mathsf{TJ}$ it is in $mathtt{P}$ for $d = 2$ but $mathtt{PSPACE}$-complete for $d = 3$. Additionally, certain well-known hardness results for $d = 2$ on general graphs, perfect graphs, planar graphs of maximum degeree three and bounded bandwidth can be extended for $d geq 3$.
記述: This PDF is not the same as the Accepted Paper for 'WALCOM 2023'.
著作権等: This paper is made available under the CC BY-SA 4.0 license.
URI: http://hdl.handle.net/2433/277668
DOI(出版社版): 10.48550/arXiv.2208.07199
関連リンク: https://www.walcom2023.conf.nycu.edu.tw/accepted-papers
出現コレクション:プレプリント

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons