このアイテムのアクセス数: 98

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
DP1084.pdf898.04 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorHitomi, Kohtaroen
dc.contributor.authorJin, Jianweien
dc.contributor.authorNagai, Keijien
dc.contributor.authorNishiyama, Yoshihikoen
dc.contributor.authorTao, Junfanen
dc.date.accessioned2022-12-08T06:36:45Z-
dc.date.available2022-12-08T06:36:45Z-
dc.date.issued2022-11-
dc.identifier.urihttp://hdl.handle.net/2433/277734-
dc.descriptionThis research was supported by the 2018 Kyoto University Institute of Economic Research Joint Usage and Research Center Project “Asymptotic Theory of Sequential Tests and Estimation of Unit Root Processes”en
dc.description.abstractThe Dickey-Fuller (DF) unit root tests are widely used in empirical studies on economics. In the local-to-unity asymptotic theory, the effects of initial values vanish as the sample size grows. However, for a small sample size, the initial value will affect the distribution of the test statistics. When ignoring the effect of the initial value, the left-sided unit root test sets the critical value smaller than it should be. Therefore, the size and power of the test become smaller. This paper investigates the effect of the initial value for the DF test (including the t test). Limiting approximations of the DF test statistics are the ratios of two integrals which are represented via a one-dimensional squared Bessel process. We derive the joint density of the squared Bessel process and its integral, enabling us to compute this ratio's distribution. For independent normal errors, the exact distribution of the Dickey-Fuller coefficient test statistic is obtained using the Imhof (1961) method for non-central chi-squared distribution. Numerical results show that when the sample size is small, the limiting distributions of the DF test statistics with initial values fit well with the exact or simulated distributions. We transform the DF test with respect to a local parameter into the test for a shift in the location parameter of normal distributions. As a result, a concise method for computing the powers of DF tests is derived.en
dc.language.isoeng-
dc.publisherInstitute of Economic Research, Kyoto Universityen
dc.publisher.alternative京都大学経済研究所ja
dc.subjectDickey-Fuller testsen
dc.subjectSquared Bessel processen
dc.subjectjoint densityen
dc.subjectpowers approximated by normal distributionen
dc.subjectexact distributionen
dc.subjectC12en
dc.subjectC22en
dc.subjectC46en
dc.subject.ndc330-
dc.titleUnit root tests considering initial values and a concise method for computing powersen
dc.typeresearch report-
dc.type.niitypeResearch Paper-
dc.identifier.jtitleKIER Discussion Paperen
dc.identifier.volume1084-
dc.identifier.spage1-
dc.identifier.epage20-
dc.textversionauthor-
dc.sortkey01084-
dc.addressKyoto Institute of Technologyen
dc.addressYokohama National Universityen
dc.addressYokohama National Universityen
dc.addressInstitute of Economic Research, Kyoto Universityen
dc.addressInstitute of Economic Research, Kyoto Universityen
dc.relation.urlhttps://www.kier.kyoto-u.ac.jp/publication/?cat=en-
dcterms.accessRightsopen access-
datacite.awardNumber19H01473-
datacite.awardNumber20K01589-
datacite.awardNumber21K01422-
datacite.awardNumber22K20133-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19H01473/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-20K01589/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-21K01422/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-22K20133/-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle大規模データを使った因果推論のためのミクロ計量経済分析とEBPMへの応用ja
jpcoar.awardTitle時系列データの逐次解析と金融バブルの存在の検定ja
jpcoar.awardTitle情報量に基づく停止時刻を用いたゴルトン=ワトソン分枝過程の統計的逐次解析ja
jpcoar.awardTitleバブルと感染爆発: 非エルゴード的時系列に対する統計的モニタリングと変化点検出ja
出現コレクション:KIER Discussion Paper (英文版)

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。