このアイテムのアクセス数: 114

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
bies.202100118.pdf723.72 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOkada, Daigoen
dc.contributor.authorZheng, Chengen
dc.contributor.authorCheng, Jian Haoen
dc.contributor.authorYamada, Ryoen
dc.contributor.alternative岡田, 大瑚ja
dc.contributor.alternative鄭, 誠ja
dc.contributor.alternative程, 健豪ja
dc.contributor.alternative山田, 亮ja
dc.date.accessioned2022-12-09T04:45:40Z-
dc.date.available2022-12-09T04:45:40Z-
dc.date.issued2022-01-
dc.identifier.urihttp://hdl.handle.net/2433/277759-
dc.description.abstractGenetic epidemiology is a rapidly advancing field due to the recent availability of large amounts of omics data. In recent years, it has become possible to obtain omics information at the single-cell level, so genetic epidemiological models need to be updated to integrate with single-cell expression data. In this perspective paper, we propose a cell population-based framework for genetic epidemiology in the single-cell era. In this framework, genetic diversity influences phenotypic diversity through the diversity of cell population profiles, which are defined as high-dimensional probability distributions of the state spaces of biomolecules of each omics layer. We discuss how biomolecular experimental measurement data can capture the different properties of this distribution. In particular, single-cell data constitute a sample from this population distribution where only some coordinate values are observable. From a data analysis standpoint, we introduce methodology for feature extraction from cell population profiles. Finally, we discuss how this framework can be applied not only to genetic epidemiology but also to systems biology.en
dc.language.isoeng-
dc.publisherWileyen
dc.rights© 2021 Wiley Periodicals LLCen
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectgenomicsen
dc.subjectgeneticsen
dc.subjectsingle cellen
dc.subjecttranscriptomeen
dc.subjectepigenomeen
dc.subjectsystems biologyen
dc.subjectGWASen
dc.titleCell population‐based framework of genetic epidemiology in the single‐cell omics eraen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleBioEssaysen
dc.identifier.volume44-
dc.identifier.issue1-
dc.relation.doi10.1002/bies.202100118-
dc.textversionpublisher-
dc.identifier.artnum2100118-
dc.identifier.pmid34821401-
dcterms.accessRightsopen access-
datacite.awardNumber19J14816-
datacite.awardNumber21K21316-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-19J14816/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21K21316/-
dc.identifier.pissn0265-9247-
dc.identifier.eissn1521-1878-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle情報幾何を用いた、細胞集団プロファイルの異同とその生物学的背景の統合解析ja
jpcoar.awardTitle幾何学と関数データ解析による医学・生命科学の時空間データマイニングja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons