このアイテムのアクセス数: 164

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
arXiv.2203.16861.pdf853.87 kBAdobe PDF見る/開く
タイトル: On Reconfiguration Graphs of Independent Sets under Token Sliding
著者: AVIS, David
HOANG, Duc Anh
キーワード: Token sliding
Reconfiguration graph
Independent set
Structure
Realizability
Geometric graph
発行日: 8-Dec-2022
開始ページ: 1
終了ページ: 17
抄録: An independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $mathsf{TS}_k$-reconfiguration graph into smaller pieces.
著作権等: This paper is made available under the CC BY-SA 4.0 license.
URI: http://hdl.handle.net/2433/277778
DOI(出版社版): 10.48550/arXiv.2203.16861
出現コレクション:プレプリント

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons