このアイテムのアクセス数: 164
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
arXiv.2203.16861.pdf | 853.87 kB | Adobe PDF | 見る/開く |
タイトル: | On Reconfiguration Graphs of Independent Sets under Token Sliding |
著者: | AVIS, David HOANG, Duc Anh |
キーワード: | Token sliding Reconfiguration graph Independent set Structure Realizability Geometric graph |
発行日: | 8-Dec-2022 |
開始ページ: | 1 |
終了ページ: | 17 |
抄録: | An independent set of a graph $G$ is a vertex subset $I$ such that there is no edge joining any two vertices in $I$. Imagine that a token is placed on each vertex of an independent set of $G$. The $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ takes all non-empty independent sets (of size $k$) as its nodes, where $k$ is some given positive integer. Two nodes are adjacent if one can be obtained from the other by sliding a token on some vertex to one of its unoccupied neighbors. This paper focuses on the structure and realizability of these reconfiguration graphs. More precisely, we study two main questions for a given graph $G$: (1) Whether the $mathsf{TS}_k$-reconfiguration graph of $G$ belongs to some graph class $mathcal{G}$ (including complete graphs, paths, cycles, complete bipartite graphs, connected split graphs, maximal outerplanar graphs, and complete graphs minus one edge) and (2) If $G$ satisfies some property $mathcal{P}$ (including $s$-partitedness, planarity, Eulerianity, girth, and the clique's size), whether the corresponding $mathsf{TS}$- ($mathsf{TS}_k$-) reconfiguration graph of $G$ also satisfies $mathcal{P}$, and vice versa. Additionally, we give a decomposition result for splitting a $mathsf{TS}_k$-reconfiguration graph into smaller pieces. |
著作権等: | This paper is made available under the CC BY-SA 4.0 license. |
URI: | http://hdl.handle.net/2433/277778 |
DOI(出版社版): | 10.48550/arXiv.2203.16861 |
出現コレクション: | プレプリント |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス