このアイテムのアクセス数: 109

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
ACCESS.2022.3149336.pdf7.04 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorItahara, Soheien
dc.contributor.authorNishio, Takayukien
dc.contributor.authorKoda, Yusukeen
dc.contributor.authorYamamoto, Kojien
dc.contributor.alternative板原, 壮平ja
dc.contributor.alternative西尾, 理志ja
dc.contributor.alternative山本, 高至ja
dc.date.accessioned2022-12-16T00:02:40Z-
dc.date.available2022-12-16T00:02:40Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/277852-
dc.description.abstractThe distributed inference (DI) framework has gained traction as a technique for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy IoT networks. However, generally, there is a communication system-level trade-off between communication latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us to improve the trade-off between the communication latency and accuracy by efforts on ML techniques. Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to fine-tune the ML model by emulating the effect of unreliable communication links through the application of the dropout technique. This enables the DI system to obtain robustness against unreliable communication links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under lossy networks.en
dc.language.isoeng-
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectDistributed inferenceen
dc.subjectcommunication-efficiencyen
dc.subjectmachine learningen
dc.subjectpacket loss toleranten
dc.subjectdelay-aware systemen
dc.titleCommunication-Oriented Model Fine-Tuning for Packet-Loss Resilient Distributed Inference Under Highly Lossy IoT Networksen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleIEEE Accessen
dc.identifier.volume10-
dc.identifier.spage14969-
dc.identifier.epage14979-
dc.relation.doi10.1109/ACCESS.2022.3149336-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.eissn2169-3536-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons