このアイテムのアクセス数: 129

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.isci.2022.105754.pdf2.58 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYoshido, Kanaen
dc.contributor.authorHonda, Naokien
dc.contributor.alternative吉戸, 香奈ja
dc.contributor.alternative本田, 直樹ja
dc.date.accessioned2023-01-13T03:04:20Z-
dc.date.available2023-01-13T03:04:20Z-
dc.date.issued2023-01-20-
dc.identifier.urihttp://hdl.handle.net/2433/278383-
dc.descriptionなぜ免疫系はウイルスを排除して食べ物を排除しないのか? --予測符号化に基づく免疫記憶のアップデート--. 京都大学プレスリリース. 2023-01-12.ja
dc.description.abstractThe immune system discriminates between harmful and harmless antigens based on past experiences; however, the underlying mechanism is largely unknown. From the viewpoint of machine learning, the learning system predicts the observation and updates the prediction based on prediction error, a process known as “predictive coding.” Here, we modeled the population dynamics of T cells by adopting the concept of predictive coding; conventional and regulatory T cells predict the antigen concentration and excessive immune response, respectively. Their prediction error signals, possibly via cytokines, induce their differentiation to memory T cells. Through numerical simulations, we found that the immune system identifies antigen risks depending on the concentration and input rapidness of the antigen. Further, our model reproduced history-dependent discrimination, as in allergy onset and subsequent therapy. Taken together, this study provided a novel framework to improve our understanding of how the immune system adaptively learns the risks of diverse antigens.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Author(s).en
dc.rightsThis is an open access article under the Creative Commons Attribution 4.0 International license.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectImmunologyen
dc.subjectmathematical biosciencesen
dc.subjectcomputing methodologyen
dc.subjectmachine learningen
dc.titleAdaptive discrimination between harmful and harmless antigens in the immune system by predictive codingen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleiScienceen
dc.identifier.volume26-
dc.identifier.issue1-
dc.relation.doi10.1016/j.isci.2022.105754-
dc.textversionpublisher-
dc.identifier.artnum105754-
dc.addressLaboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto Universityen
dc.addressLaboratory of Theoretical Biology, Graduate School of Biostudies, Kyoto University; Laboratory of Data-driven Biology, Graduate School of Integrated Sciences for Life, Hiroshima University; Theoretical Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences; Kansei-Brain Informatics Group, Center for Brain, Mind and Kansei Sciences Research (BMK Center), Hiroshima Universityen
dc.identifier.pmid36594030-
dc.relation.urlhttps://www.kyoto-u.ac.jp/ja/research-news/2023-01-12-0-
dcterms.accessRightsopen access-
datacite.awardNumber21H05170-
datacite.awardNumber21J23680-
datacite.awardNumber16K16147-
datacite.awardNumber19H04776-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PLANNED-21H05170/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21J23680/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16K16147/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PUBLICLY-19H04776/-
dc.identifier.eissn2589-0042-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle新自由エネルギー原理の確立ja
jpcoar.awardTitle抗原識別および記憶動態に基づく免疫システムの統一的理解ja
jpcoar.awardTitle逆強化学習法による「動物の行動戦略を制御する神経基盤」の同定ja
jpcoar.awardTitle脳回路構築における軸索配線原理の解読ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons