このアイテムのアクセス数: 96

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
abe.11.16.pdf4.65 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorOtsuki, Ryoen
dc.contributor.authorSugiyama, Osamuen
dc.contributor.authorMori, Yukien
dc.contributor.authorMiyake, Masahiroen
dc.contributor.authorHiragi, Shusukeen
dc.contributor.authorYamamoto, Goshiroen
dc.contributor.authorSantos, Lucianoen
dc.contributor.authorNakanishi, Yutaen
dc.contributor.authorHosoda, Yoshikatsuen
dc.contributor.authorTamura, Hiroshien
dc.contributor.authorMatsumoto, Shigemien
dc.contributor.authorTsujikawa, Akitakaen
dc.contributor.authorKuroda, Tomohiroen
dc.contributor.alternative大槻, 涼ja
dc.contributor.alternative杉山, 治ja
dc.contributor.alternative森, 雄貴ja
dc.contributor.alternative三宅, 正裕ja
dc.contributor.alternative平木, 秀輔ja
dc.contributor.alternative山本, 豪志朗ja
dc.contributor.alternative中西, 悠太ja
dc.contributor.alternative細田, 祥勝ja
dc.contributor.alternative田村, 寛ja
dc.contributor.alternative松本, 繁巳ja
dc.contributor.alternative辻川, 明孝ja
dc.contributor.alternative黒田, 知宏ja
dc.date.accessioned2023-01-18T01:18:00Z-
dc.date.available2023-01-18T01:18:00Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/278464-
dc.description.abstractDesigning a deep neural network model that integrates clinical images with other electronic medical records entails various preprocessing operations. Preprocessing of clinical images often requires trimming of parts of the lesions shown in the images, whereas preprocessing of other electronic medical records requires vectorization of these records; for example, patient age is often converted into a categorical vector of 10-year intervals. Although these preprocessing operations are critical to the performance of the classification model, there is no guarantee that the preprocessing step chosen is appropriate for model training. The ability to integrate these preprocessing operations into a deep neural network model and to train the model, including the preprocessing operations, can help design a multi-modal medical classification model. This study proposes integration layers of preprocessing, both for clinical images and electronic medical records, in deep neural network models. Preprocessing of clinical images is realized by a vision transformer layer that selectively adopts the parts of the images requiring attention. The preprocessing of other medical electrical records is performed by adopting full-connection layers and normalizing these layers. These proposed preprocessing-integrated layers were verified using a posttreatment visual acuity prediction task in ophthalmology as a case study. This prediction task requires clinical images as well as patient profile data corresponding to each patient's posttreatment logMAR visual acuity. The performance of a heuristically designed prediction model was compared with the performance of the prediction model that includes the proposed preprocessing integration layers. The mean square errors between predicted and correct results were 0.051 for the heuristic model and 0.054 for the proposed model. Experimental results showed that the proposed model utilizing preprocessing integration layers achieved nearly the same performance as the heuristically designed model.en
dc.language.isoeng-
dc.publisherJapanese Society for Medical and Biological Engineeringen
dc.publisher.alternative日本生体医工学会ja
dc.rightsCopyright: ©2022 The Author(s).en
dc.rightsThis is an open access article distributed under the terms of the Creative Commons BY 4.0 International (Attribution) License, which permits the unrestricted distribution, reproduction and use of the article provided the original source and authors are credited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/legalcode-
dc.subjectdeep learningen
dc.subjectautomation of preprocessingen
dc.subjectvisual acuity predictionen
dc.titleIntegrating Preprocessing Operations into Deep Learning Model: Case Study of Posttreatment Visual Acuity Predictionen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleAdvanced Biomedical Engineeringen
dc.identifier.volume11-
dc.identifier.spage16-
dc.identifier.epage24-
dc.relation.doi10.14326/abe.11.16-
dc.textversionpublisher-
dcterms.accessRightsopen access-
dc.identifier.eissn2187-5219-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons