このアイテムのアクセス数: 48
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
22-EJP825.pdf | 350.34 kB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Collins, Benoît | en |
dc.contributor.author | Yao, Jianfeng | en |
dc.contributor.author | Yuan, Wangjun | en |
dc.date.accessioned | 2023-02-13T09:37:59Z | - |
dc.date.available | 2023-02-13T09:37:59Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/279255 | - |
dc.description.abstract | We study the eigenvalue distributions for sums of independent rank-one k-fold tensor products of large n-dimensional vectors. Previous results in the literature assume that k=o(n) and show that the eigenvalue distributions converge to the celebrated Marčenko-Pastur law under appropriate moment conditions on the base vectors. In this paper, motivated by quantum information theory, we study the regime where k grows faster, namely k=O(n). We show that the moment sequences of the eigenvalue distributions have a limit, which is different from the Marčenko-Pastur law, and the Marčenko-Pastur law limit holds if and only if k=o(n) for this tensor model. The approach is based on the method of moments. | en |
dc.language.iso | eng | - |
dc.publisher | Institute of Mathematical Statistics | en |
dc.rights | Creative Commons Attribution License | en |
dc.rights.uri | https://creativecommons.org/licenses/by/3.0/legalcode | - |
dc.subject | 60B20 | en |
dc.subject | 15B52 | en |
dc.subject | eigenvalue distribution | en |
dc.subject | large k-fold tensors | en |
dc.subject | Marčenko-Pastur law | en |
dc.subject | quantum information theory | en |
dc.title | On spectral distribution of sample covariance matrices from large dimensional and large k-fold tensor products | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | Electronic Journal of Probability | en |
dc.identifier.volume | 27 | - |
dc.identifier.spage | 1 | - |
dc.identifier.epage | 18 | - |
dc.relation.doi | 10.1214/22-EJP825 | - |
dc.textversion | publisher | - |
dc.identifier.artnum | 22-EJP825 | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 17H04823 | - |
datacite.awardNumber | 20K20882 | - |
datacite.awardNumber | 21H00987 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-17H04823/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20K20882/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H00987/ | - |
dc.identifier.pissn | 1083-6489 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | ランダム行列の深い研究と量子情報理論への応用 | ja |
jpcoar.awardTitle | 巨大なランダムテンソルの漸近的挙動の研究 | ja |
jpcoar.awardTitle | Random Matrix Theory: Free Probability Theory and beyond | en |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス