ダウンロード数: 217

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.caeai.2022.100104.pdf1.77 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorYang, Albert C.M.en
dc.contributor.authorFlanagan, Brendanen
dc.contributor.authorOgata, Hiroakien
dc.contributor.alternative緒方, 広明ja
dc.date.accessioned2023-02-17T10:48:46Z-
dc.date.available2023-02-17T10:48:46Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/279309-
dc.description.abstractComputerized adaptive testing (CAT) can effectively facilitate student assessment by dynamically selecting questions on the basis of learner knowledge and item difficulty. However, most CAT models are designed for one-time evaluation rather than improving learning through formative assessment. Since students cannot remember everything, encouraging them to repeatedly evaluate their knowledge state and identify their weaknesses is critical when developing an adaptive formative assessment system in real educational contexts. This study aims to achieve this goal by proposing an adaptive formative assessment system based on CAT and the learning memory cycle to enable the repeated evaluation of students' knowledge. The CAT model measures student knowledge and item difficulty, and the learning memory cycle component of the system accounts for students’ retention of information learned from each item. The proposed system was compared with an adaptive assessment system based on CAT only and a traditional nonadaptive assessment system. A 7-week experiment was conducted among students in a university programming course. The experimental results indicated that the students who used the proposed assessment system outperformed the students who used the other two systems in terms of learning performance and engagement in practice tests and reading materials. The present study provides insights for researchers who wish to develop formative assessment systems that can adaptively generate practice tests.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Authors. Published by Elsevier Ltd.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectPersonalized learningen
dc.subjectAdaptive learningen
dc.subjectFormative assessmenten
dc.subjectComputerized adaptive testingen
dc.subjectLearning memory cycleen
dc.titleAdaptive formative assessment system based on computerized adaptive testing and the learning memory cycle for personalized learningen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleComputers and Education: Artificial Intelligenceen
dc.identifier.volume3-
dc.relation.doi10.1016/j.caeai.2022.100104-
dc.textversionpublisher-
dc.identifier.artnum100104-
dcterms.accessRightsopen access-
datacite.awardNumber20H01722-
datacite.awardNumber16H06304-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20H01722/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-16H06304/-
dc.identifier.eissn2666-920X-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleKnowledge-Aware Learning Analytics Infrastructure to Support Smart Education and Learningen
jpcoar.awardTitle教育ビッグデータを用いた教育・学習支援のためのクラウド情報基盤の研究ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons