このアイテムのアクセス数: 84

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2228-06.pdf11.28 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKimura, Daisukeen
dc.contributor.authorNakazawa, Kojien
dc.contributor.authorSaotome, Kenjien
dc.contributor.alternative木村, 大輔ja
dc.contributor.alternative中澤, 巧爾ja
dc.contributor.alternative早乙女, 献自ja
dc.date.accessioned2023-03-14T02:54:15Z-
dc.date.available2023-03-14T02:54:15Z-
dc.date.issued2022-08-
dc.identifier.urihttp://hdl.handle.net/2433/279726-
dc.description.abstractCyclic proof systems are extensions of the sequent-calculus style proof systems for logics with inductively defined predicates. In cyclic proof systems, inductive reasoning is realized as cyclic structures in proof trees. It has been already known that the cut-elimination property does not hold for the cyclic proof systems of some logics such as the first-order predicate logic and the separation logic. In this paper, we consider the cyclic proof systems with inductively defined propositions (that is, nullary predicates), and prove that the cut-elimination holds for the propositional logic, and it does not hold for the bunched logic.en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleCut-Elimination for Cyclic Proof Systems with Inductively Defined Propositions (Theory and Applications of Proof and Computation)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2228-
dc.identifier.spage59-
dc.identifier.epage72-
dc.textversionpublisher-
dc.sortkey06-
dc.addressToho Universityen
dc.addressNagoya Universityen
dc.addressIntelligent Systems Laboratory, SECOM Company Limiteden
dc.address.alternative東邦大学ja
dc.address.alternative名古屋大学ja
dc.address.alternativeセコム株式会社ja
dcterms.accessRightsopen access-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
出現コレクション:2228 証明と計算の理論と応用

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。