ダウンロード数: 36
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
2230-05.pdf | 10.42 MB | Adobe PDF | 見る/開く |
タイトル: | An explicit lifting construction of CAP forms on O(1, 5) (Automorphic form, automorphic $L$-functions and related topics) |
著者: | Narita, Hiro-aki Pitale, Ameya Wagh, Siddhesh |
著者名の別形: | 成田, 宏秋 |
発行日: | Oct-2022 |
出版者: | 京都大学数理解析研究所 |
誌名: | 数理解析研究所講究録 |
巻: | 2230 |
開始ページ: | 51 |
終了ページ: | 64 |
抄録: | This article is the write-up of what the fist named author presented on January 25th in 2022 during the RJMS workshop. We explicitly construct non-tempered cusp forms on the orthogonal group O(1, 5) of signature (1+, 5-). Given a definite quaternion algebra B over ℚ, the orthogonal group is attached to the indefinite quadratic space of rank 6 with the anisotropic part defined by the reduced norm of B. As well as the explicit construction we study the cuspidal representations generated by our cusp forms in detail. We determine all local components of the cuspidal representations and show that our cusp forms are CAP forms. Our construction can be viewed as a generalization of [8]to the case of any definite quaternion algebras, for which we note that [8] takes up the case where the discriminant of B is two. Unlike [8] the method of the construction is to consider the theta lifting from Maass cusp forms to O(1, 5), following the formulation by Borcherds. |
URI: | http://hdl.handle.net/2433/279759 |
出現コレクション: | 2230 保型形式、保型L関数とその周辺 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。