ダウンロード数: 20

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_35_4_381.pdf770.25 kBAdobe PDF見る/開く
タイトル: Some Properties of Multicolored-Branch Graphs
著者: OZAWA, Takao
HIRAO, Shigeharu
HATTORI, Yoshio
発行日: 28-Dec-1973
出版者: Faculty of Engineering, Kyoto University
誌名: Memoirs of the Faculty of Engineering, Kyoto University
巻: 35
号: 4
開始ページ: 381
終了ページ: 392
抄録: A multicolored-branch graph is such a linear graph that the branches of the graph are partitioned into several sets, and a certain color is assigned to the branches belonging to each of the sets. The assignment is called a coloring. The degree of interference of loops or cutsets in such a graph is deffned to be the minimum number of indenpedent loops or cutsets respectively containing all the colors. The maximum of the degree of interference taken over all the possible colorings is studied. Theorems concerning the colorings to give the maximum in a two-colored-branch graph are derived. Moreover, the maximum of the degree of interference is shown to be equal to the topological degree of freedom and to the maximum distance between a pair of trees in the graph. The degree of interference is also related to the rank of a certain submatrix of the fundamental loop or cutset matrix. An upper bound and a lower bound on the degree of interference in a three-colored-branch graph are given.
URI: http://hdl.handle.net/2433/280927
出現コレクション:Vol.35 Part 4

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。