ダウンロード数: 17
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
mfeku_39_4_482.pdf | 548.69 kB | Adobe PDF | 見る/開く |
タイトル: | Continuum Mechanics in a Space of Any Dimension : IV. Viscometric Flows of General Fluids |
著者: | TOKUOKA, Tatsuo |
発行日: | 31-Jan-1978 |
出版者: | Faculty of Engineering, Kyoto University |
誌名: | Memoirs of the Faculty of Engineering, Kyoto University |
巻: | 39 |
号: | 4 |
開始ページ: | 482 |
終了ページ: | 494 |
抄録: | The viscometric flows of the incompressible general fluids in n-dimensional space are investigated, where n takes 2, 3, 4 and 5, and the determinate stress of the fluids is determined by the relative deformation history. It is shown that the characteristic matrices of the viscometric flow have one rate of shear for n=2 and 3, and two for n=4 and 5. The general fluids in the flow are represented by the viscometric functions. There are one shear stress function for n=2, 3, 4 and 5, one normal stress difference function for n=2, and two for n=3, 4 and 5. The approximation forms of the viscometric functions are obtained in the case of a small magnitude of rate of shear. The generalized steady curvilinear flow is also investigated, and it is proved that the flow is a special case of the viscometric flow. |
URI: | http://hdl.handle.net/2433/281050 |
出現コレクション: | Vol.39 Part 4 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。