このアイテムのアクセス数: 59

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_41_4_518.pdf848.65 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorTAMURA, Takeshien
dc.date.accessioned2023-03-28T09:08:17Z-
dc.date.available2023-03-28T09:08:17Z-
dc.date.issued1980-02-29-
dc.identifier.urihttp://hdl.handle.net/2433/281124-
dc.description.abstractReducing the linear Biot's equations into a single governing equation, the mechanism ofmulti-dimensional consolidation is considered by means of a variational principle. Particularly, the investigation is made for the geometrical meaning of the linear relation between the distribution of excess pore water pressure and that of deformation, which is obtained by observing the consolidation process from the final steady state. As the results of the present study, we can conclude that (1) Biot's equations of consolidation are reduced into a single governing equation with the excess pore water pressure as the only unknown function, if we choose the final steady state as the reference, (2) the consolidation process is interpreted as a series of minimum norm problems in a metric vector space, i.e., the Function Space, and (3) the equilibrium condition of consolidation is equivalent to determining a point in some subset which has the shortest distance from the origin of the Function Space.en
dc.language.isoeng-
dc.publisherFaculty of Engineering, Kyoto Universityen
dc.publisher.alternative京都大学工学部ja
dc.subject.ndc500-
dc.titleA Study on the Mechanism of Consolidationen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA00732503-
dc.identifier.jtitleMemoirs of the Faculty of Engineering, Kyoto Universityen
dc.identifier.volume41-
dc.identifier.issue4-
dc.identifier.spage518-
dc.identifier.epage535-
dc.textversionpublisher-
dc.sortkey13-
dc.addressDepartment of Transportation Engineeringen
dcterms.accessRightsopen access-
dc.identifier.pissn0023-6063-
出現コレクション:Vol.41 Part 4

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。