このアイテムのアクセス数: 34

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_42_4_377.pdf774.35 kBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorKIMURA, Toshikazuen
dc.contributor.authorOHNO, Katsuhisaen
dc.contributor.authorMINE, Hisashien
dc.date.accessioned2023-03-28T09:08:22Z-
dc.date.available2023-03-28T09:08:22Z-
dc.date.issued1981-01-31-
dc.identifier.urihttp://hdl.handle.net/2433/281154-
dc.description.abstractIn this paper, applying a method of diffusion approximation, we consider optimal operating policies for a GI/G/1 queueing system with a removable server. The following costs are incurred in the system : a cost per unit time of keeping the server running, fixed costs for turning the server on or off, and a holding cost per customer in the system per unit time. The average cost rate is used as a criterion for optimality. By using a couple of diffusion processes that approximate the number of customers in the system, an explicit form of the average cost rate is derived. Furthermore, some sufficient conditions under which the optimal operating policy falls into specific forms are obtained. It is examined numerically how the boundary condition at the origin of the diffusion process effects the optimal operating policy and its cost.en
dc.language.isoeng-
dc.publisherFaculty of Engineering, Kyoto Universityen
dc.publisher.alternative京都大学工学部ja
dc.subject.ndc500-
dc.titleApproximate Analysis of Optimal Operating Policies for a GI/G/1 Queueing Systemen
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAA00732503-
dc.identifier.jtitleMemoirs of the Faculty of Engineering, Kyoto Universityen
dc.identifier.volume42-
dc.identifier.issue4-
dc.identifier.spage377-
dc.identifier.epage390-
dc.textversionpublisher-
dc.sortkey04-
dc.addressDepartment of Applied Mathematics and Physicsen
dc.addressDepartment of Applied Mathematics and Physicsen
dc.addressDepartment of Applied Mathematics and Physicsen
dcterms.accessRightsopen access-
dc.identifier.pissn0023-6063-
出現コレクション:Vol.42 Part 4

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。