ダウンロード数: 21
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
mfeku_42_4_440.pdf | 393.37 kB | Adobe PDF | 見る/開く |
タイトル: | On the Practically Reachable Subspace of the Discrete-Time Systems |
著者: | ANDO, Kazuaki |
発行日: | 31-Jan-1981 |
出版者: | Faculty of Engineering, Kyoto University |
誌名: | Memoirs of the Faculty of Engineering, Kyoto University |
巻: | 42 |
号: | 4 |
開始ページ: | 440 |
終了ページ: | 448 |
抄録: | Spanning vectors of the practically reachable subspace of a single input discrete-time system are studied. Reachable subspace is the space spanned by the vectors of the form b, Ab, A²b, ・・・ , If Aᵏb lies on the subspace Sₖ spanned by the vectors b, Ab, Aᵃb, ・・・ , Aᵏ⁻¹, then Aᵏ⁺lb also lies on the same subspace Sₖ for any l≥0, and so, Sₖ is the reachable subspace. On checking, if Aᵏb lies on Sₖ by numerical calculation, we usually assume that Aᵏb lies on Sₖ in practice, if the distance δ of Aᵏb from Sₖ is small. As the distance of Aᵏ⁺lᵇ from Sₖ is not guaranteed to be small in this case, it must be examined if Aᵏ⁺lb can be assumed to lie on Sₖ, in practice or not. Concerning the distance of Aᵏ⁺l from Sₖ, the following results are obtained, i) When k<n-1, where n is the dimension of the state, Aᵏ⁺lb can have an arbitrary value for n-k-l>l>1. ii) If the maximal number of practically independent vectors are taken from the set of vectors b, Ab, ・・・ , Aⁿ⁻1b, and if the absolute values of the eigenvalues are less than unity, then the distance between Aᵏ⁺lb and the subspace S spanned by these practically independent vectors does not become larger than a certain value MS for any l. The condition that S becomes practically reachable subspace is also studied. |
URI: | http://hdl.handle.net/2433/281159 |
出現コレクション: | Vol.42 Part 4 |
このリポジトリに保管されているアイテムはすべて著作権により保護されています。