ダウンロード数: 20

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
mfeku_51_3_169.pdf1.27 MBAdobe PDF見る/開く
タイトル: Parameter Identification of Image Models by the Recursive Maximum Likelihood Method
著者: HIRAI, Takashi
KATAYAMA, Tohru
発行日: 30-Jul-1989
出版者: Faculty of Engineering, Kyoto University
誌名: Memoirs of the Faculty of Engineering, Kyoto University
巻: 51
号: 3
開始ページ: 169
終了ページ: 186
抄録: This paper considers the problem of identifying the blur parameters of the observed image. It is assumed that the original image is a sample from the homogeneous random field described by a two-dimensional (2-D) semicausal model, and that the point spread function (PSF) characterizing the image blur is symmetric. It is also assumed that the observation noise is negligibly small. By applying the discrete sine transform, we derive a set of nearly uncorrelated ARMA models, which are of non-minimum phase, for the blurred image. Although all-pass components of the MA part of the models can not be estimated, we show that the parameters of the non-minimum phase MA part can be restored by exploiting the fact that the PSF is symmetric. We develop a new algorithm for identifying the blur parameters of the image model from the MA parameters estimated by the recursive maximum likelihood (RML) method. Simulation studies are also included to show the feasibility of the algorithm.
URI: http://hdl.handle.net/2433/281398
出現コレクション:Vol.51 Part 3

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。