このアイテムのアクセス数: 177

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
rsos.221614.pdf3.8 MBAdobe PDF見る/開く
タイトル: Computational capability of ecological dynamics
著者: Ushio, Masayuki
Watanabe, Kazufumi
Fukuda, Yasuhiro
Tokudome, Yuji
Nakajima, Kohei
著者名の別形: 潮, 雅之
渡邉, 一史
福田, 康弘
徳留, 勇志
中嶋, 浩平
キーワード: machine learning
ecological dynamics
neural network
computational capability
reservoir computing
ecological networks
artificial intelligence
computational biology
ecology
発行日: Apr-2023
出版者: The Royal Society
誌名: Royal Society Open Science
巻: 10
号: 4
論文番号: 221614
抄録: Ecological dynamics is driven by complex ecological networks. Computational capabilities of artificial networks have been exploited for machine learning purposes, yet whether an ecological network possesses a computational capability and whether/how we can use it remain unclear. Here, we developed two new computational/empirical frameworks based on reservoir computing and show that ecological dynamics can be used as a computational resource. In silico ecological reservoir computing (ERC) reconstructs ecological dynamics from empirical time series and uses simulated system responses for information processing, which can predict near future of chaotic dynamics and emulate nonlinear dynamics. The real-time ERC uses real population dynamics of a unicellular organism, Tetrahymena thermophila. The temperature of the medium is an input signal and population dynamics is used as a computational resource. Intriguingly, the real-time ecological reservoir has necessary conditions for computing (e.g. synchronized dynamics in response to the same input sequences) and can make near-future predictions of empirical time series, showing the first empirical evidence that population-level phenomenon is capable of real-time computations. Our finding that ecological dynamics possess computational capability poses new research questions for computational science and ecology: how can we efficiently use it and how is it actually used, evolved and maintained in an ecosystem?
記述: 生態系を利用した全く新しいAI --高い生物多様性は高い計算能力に繋がる?--. 京都大学プレスリリース. 2023-04-20.
Eco-computing: KyotoU probes the computing potential of ecological networks. 京都大学プレスリリース. 2023-04-19.
著作権等: © 2023 The Authors.
Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
URI: http://hdl.handle.net/2433/281765
DOI(出版社版): 10.1098/rsos.221614
PubMed ID: 37090968
関連リンク: https://www.kyoto-u.ac.jp/ja/research-news/2023-04-20-0
https://www.kyoto-u.ac.jp/en/research-news/2023-04-19
出現コレクション:学術雑誌掲載論文等

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons