このアイテムのアクセス数: 103

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
18824889.2022.2095827.pdf1.7 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIto, Kaitoen
dc.contributor.authorKashima, Kenjien
dc.contributor.alternative伊藤, 海斗ja
dc.contributor.alternative加嶋, 健司ja
dc.date.accessioned2023-05-24T01:40:47Z-
dc.date.available2023-05-24T01:40:47Z-
dc.date.issued2022-
dc.identifier.urihttp://hdl.handle.net/2433/282781-
dc.description.abstractKullback–Leibler (KL) control enables efficient numerical methods for nonlinear optimal control problems. The crucial assumption of KL control is the full controllability of transition distributions. However, this assumption is often violated when the dynamics evolves in a continuous space. Consequently, applying KL control to problems with continuous spaces requires some approximation, which leads to the loss of the optimality. To avoid such an approximation, in this paper, we reformulate the KL control problem for continuous spaces so that it does not require unrealistic assumptions. The key difference between the original and reformulated KL control is that the former measures the control effort by the KL divergence between controlled and uncontrolled transition distributions while the latter replaces the uncontrolled transition by a noise-driven transition. We show that the reformulated KL control admits efficient numerical algorithms like the original one without unreasonable assumptions. Specifically, the associated value function can be computed by using a Monte Carlo method based on its path integral representation.en
dc.language.isoeng-
dc.publisherTaylor & Francisen
dc.rights© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.en
dc.rightsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectOptimal controlen
dc.subjectMarkov decision processesen
dc.subjectdiscrete-time nonlinear systemsen
dc.titleKullback–Leibler control for discrete-time nonlinear systems on continuous spacesen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleSICE Journal of Control, Measurement, and System Integrationen
dc.identifier.volume15-
dc.identifier.issue2-
dc.identifier.spage119-
dc.identifier.epage129-
dc.relation.doi10.1080/18824889.2022.2095827-
dc.textversionpublisher-
dcterms.accessRightsopen access-
datacite.awardNumber21J14577-
datacite.awardNumber21H04875-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21J14577/-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04875/-
dc.identifier.pissn1882-4889-
dc.identifier.eissn1884-9970-
jpcoar.funderName日本学術振興会ja
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitleデータ活用制御手法の信頼性向上にむけた確率雑音の効用解析ja
jpcoar.awardTitle情報の取得を包含した制御理論と統計的学習理論の融合数理基盤ja
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons