このアイテムのアクセス数: 103
このアイテムのファイル:
ファイル | 記述 | サイズ | フォーマット | |
---|---|---|---|---|
18824889.2022.2095827.pdf | 1.7 MB | Adobe PDF | 見る/開く |
完全メタデータレコード
DCフィールド | 値 | 言語 |
---|---|---|
dc.contributor.author | Ito, Kaito | en |
dc.contributor.author | Kashima, Kenji | en |
dc.contributor.alternative | 伊藤, 海斗 | ja |
dc.contributor.alternative | 加嶋, 健司 | ja |
dc.date.accessioned | 2023-05-24T01:40:47Z | - |
dc.date.available | 2023-05-24T01:40:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://hdl.handle.net/2433/282781 | - |
dc.description.abstract | Kullback–Leibler (KL) control enables efficient numerical methods for nonlinear optimal control problems. The crucial assumption of KL control is the full controllability of transition distributions. However, this assumption is often violated when the dynamics evolves in a continuous space. Consequently, applying KL control to problems with continuous spaces requires some approximation, which leads to the loss of the optimality. To avoid such an approximation, in this paper, we reformulate the KL control problem for continuous spaces so that it does not require unrealistic assumptions. The key difference between the original and reformulated KL control is that the former measures the control effort by the KL divergence between controlled and uncontrolled transition distributions while the latter replaces the uncontrolled transition by a noise-driven transition. We show that the reformulated KL control admits efficient numerical algorithms like the original one without unreasonable assumptions. Specifically, the associated value function can be computed by using a Monte Carlo method based on its path integral representation. | en |
dc.language.iso | eng | - |
dc.publisher | Taylor & Francis | en |
dc.rights | © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. | en |
dc.rights | This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | - |
dc.subject | Optimal control | en |
dc.subject | Markov decision processes | en |
dc.subject | discrete-time nonlinear systems | en |
dc.title | Kullback–Leibler control for discrete-time nonlinear systems on continuous spaces | en |
dc.type | journal article | - |
dc.type.niitype | Journal Article | - |
dc.identifier.jtitle | SICE Journal of Control, Measurement, and System Integration | en |
dc.identifier.volume | 15 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 119 | - |
dc.identifier.epage | 129 | - |
dc.relation.doi | 10.1080/18824889.2022.2095827 | - |
dc.textversion | publisher | - |
dcterms.accessRights | open access | - |
datacite.awardNumber | 21J14577 | - |
datacite.awardNumber | 21H04875 | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21J14577/ | - |
datacite.awardNumber.uri | https://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-21H04875/ | - |
dc.identifier.pissn | 1882-4889 | - |
dc.identifier.eissn | 1884-9970 | - |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.funderName | 日本学術振興会 | ja |
jpcoar.awardTitle | データ活用制御手法の信頼性向上にむけた確率雑音の効用解析 | ja |
jpcoar.awardTitle | 情報の取得を包含した制御理論と統計的学習理論の融合数理基盤 | ja |
出現コレクション: | 学術雑誌掲載論文等 |

このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス