このアイテムのアクセス数: 132

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
j.ijpx.2022.100135.pdf4.85 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorIwata, Hiroakien
dc.contributor.authorHayashi, Yoshihiroen
dc.contributor.authorHasegawa, Akien
dc.contributor.authorTerayama, Keien
dc.contributor.authorOkuno, Yasushien
dc.contributor.alternative岩田, 浩明ja
dc.contributor.alternative林, 祥弘ja
dc.contributor.alternative長谷川, 亜樹ja
dc.contributor.alternative奥野, 恭史ja
dc.date.accessioned2023-05-26T00:07:46Z-
dc.date.available2023-05-26T00:07:46Z-
dc.date.issued2022-12-
dc.identifier.urihttp://hdl.handle.net/2433/282826-
dc.description.abstractConvolutional Neural Networks (CNNs) are image analysis techniques that have been applied to image classification in various fields. In this study, we applied a CNN to classify scanning electron microscopy (SEM) images of pharmaceutical raw material powders to determine if a CNN can evaluate particle morphology. We tested 10 pharmaceutical excipients with widely different particle morphologies. SEM images for each excipient were acquired and divided into training, validation, and test sets. Classification models were constructed by applying transfer learning to pretrained CNN models such as VGG16 and ResNet50. The results of a 5-fold cross-validation showed that the classification accuracy of the CNN model was sufficiently high using either pretrained model and that the type of excipient could be classified with high accuracy. The results suggest that the CNN model can detect differences in particle morphology, such as particle size, shape, and surface condition. By applying Grad-CAM to the constructed CNN model, we succeeded in finding particularly important regions in the particle image of the excipients. CNNs have been found to have the potential to be applied to the identification and characterization of raw material powders for pharmaceutical development.en
dc.language.isoeng-
dc.publisherElsevier BVen
dc.rights© 2022 The Authors. Published by Elsevier B.V.en
dc.rightsThis is an open access article under the CC BY-NC-ND license.en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.subjectConvolutional neural networksen
dc.subjectMachine learningen
dc.subjectScanning electron microscopeen
dc.subjectExcipientsen
dc.subjectPowderen
dc.subjectArtificial intelligenceen
dc.titleClassification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learningen
dc.typejournal article-
dc.type.niitypeJournal Article-
dc.identifier.jtitleInternational Journal of Pharmaceutics: Xen
dc.identifier.volume4-
dc.relation.doi10.1016/j.ijpx.2022.100135-
dc.textversionpublisher-
dc.identifier.artnum100135-
dc.identifier.pmid36325273-
dcterms.accessRightsopen access-
dc.identifier.eissn2590-1567-
出現コレクション:学術雑誌掲載論文等

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このアイテムは次のライセンスが設定されています: クリエイティブ・コモンズ・ライセンス Creative Commons