このアイテムのアクセス数: 65

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2234-12.pdf10.89 MBAdobe PDF見る/開く
完全メタデータレコード
DCフィールド言語
dc.contributor.authorNakahama, Ryosukeen
dc.contributor.alternative中濱, 良祐ja
dc.date.accessioned2023-05-31T05:59:26Z-
dc.date.available2023-05-31T05:59:26Z-
dc.date.issued2022-11-
dc.identifier.urihttp://hdl.handle.net/2433/282927-
dc.description.abstractLet (G, G') = (G, (G[δ]⁻)₀ ) be a symmetric pair of holomorphic type, and we consider a pair of Hermitian symmetric spaces D' = G'/K' ⊂ D = G/K, realized as bounded symmetric domains in complex vector spaces P₁⁺ := (p⁺)[δ] ⊂ p⁺ respectively. Then the universal covering group G~ of G acts unitarily on the weighted Bergman space H[λ](D) ⊂ O(D) = O[λ](D) on D for sufficiently large λ. Its restriction to the subgroup G~' decomposes discretely and multiplicity-freely, and its branching law is given explicitly by Hua-Kostant-SchmidKobayashi's formula in terms of the K~'-decomposition of the space P(p₂⁺) of polynomials onp₂⁺ := (p⁺)⁻[δ] ⊂ p⁺. Our goal is to understand the decomposition of the restriction H[λ](D)|[G~'] by studying the weighted Bergman inner product on each K~'-type in P(p₂⁺) ⊂ H[λ](D). In this article we mainly deal with the symmetric pair (G, G') = (Sp(r, ℝ), Sp(r', ℝ) x Sp(r'', ℝ)).en
dc.language.isoeng-
dc.publisher京都大学数理解析研究所ja
dc.publisher.alternativeResearch Institute for Mathematical Sciences, Kyoto Universityen
dc.subject.ndc410-
dc.titleComputation of weighted Bergman inner products on bounded symmetric domains and Parseval-Plancherel-type formulas for ($Sp$($r$, $mathbb{R}$), $Sp$($r'$, $mathbb{R}$)$times$$Sp$($r''$, $mathbb{R}$)) (Various Issues on Representation Theory and Related Topics)en
dc.typedepartmental bulletin paper-
dc.type.niitypeDepartmental Bulletin Paper-
dc.identifier.ncidAN00061013-
dc.identifier.jtitle数理解析研究所講究録ja
dc.identifier.volume2234-
dc.identifier.spage110-
dc.identifier.epage124-
dc.textversionpublisher-
dc.sortkey12-
dc.addressNTT Institute foe Fundamental Mathematicsen
dc.address.alternativeNTT基礎数学研究センタja
dcterms.accessRightsopen access-
datacite.awardNumber20J00114-
datacite.awardNumber.urihttps://kaken.nii.ac.jp/grant/KAKENHI-PROJECT-20J00114/-
dc.identifier.pissn1880-2818-
dc.identifier.jtitle-alternativeRIMS Kokyurokuen
jpcoar.funderName日本学術振興会ja
jpcoar.awardTitle対称R空間に付随する無限次元表現の分岐則に関する解析的研究ja
出現コレクション:2234 表現論とその周辺分野における諸問題

アイテムの簡略レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。