ダウンロード数: 39

このアイテムのファイル:
ファイル 記述 サイズフォーマット 
2235-02.pdf9.96 MBAdobe PDF見る/開く
タイトル: Hyperuniformity of the determinantal point processes associated with the Heisenberg group (Mathematical aspects of quantum fields and related topics)
著者: Katori, Makoto
著者名の別形: 香取, 眞理
キーワード: Hyperuniformity
Ginibre and Ginibre-type point processes
Determinantal point processes
Extended Heisenberg family of DPPs
Schrodinger representations of Heisenberg group
発行日: Dec-2022
出版者: 京都大学数理解析研究所
誌名: 数理解析研究所講究録
巻: 2235
開始ページ: 12
終了ページ: 29
抄録: The Ginibre point process is given by the eigenvalue distribution of a non-hermitian complex Gaussian matrix in the infinite matrix-size limit. This is a determinantal point process (DPP) on the complex plane ℂ in the sense that all correlation functions are given by determinants specified by an integral kernel called the correlation kernel. Shirai introduced the one-parameter (m ∈ ℕ₀) extensions of the Ginibre DPP and called them the Ginibre-type point processes. In the present paper we consider a generalization of the Ginibre and the Ginibre-type point processes on ℂ to the DPPs in the higher-dimensional spaces, ℂ[D], D = 2, 3, ... , in which they are parameterized by a multivariate level m ∈ ℕ₀[D]. We call the obtained point processes the extended Heisenberg family of DPPs, since the correlation kernels are generally identified with the correlations of two points in the space of Heisenberg group expressed by the Schrodinger representations. We prove that all DPPs in this large family are in Class I of hyperuniformity.
URI: http://hdl.handle.net/2433/282931
出現コレクション:2235 量子場の数理とその周辺

アイテムの詳細レコードを表示する

Export to RefWorks


出力フォーマット 


このリポジトリに保管されているアイテムはすべて著作権により保護されています。